Variational Monte Carlo

» Historically first quantum simulation method
» Featuresof VMC

» Slater Jastrow trial function

» Calculations of properties: g(r) S(k) n(k).

» Examples: liquid helium and electron gas.

¢ Quantum solids

» Ewald Sums for Charged systems

 Tria Function beyond Slater-Jastrow: back flow and 3-
body

» Twist Averaged Boundary Conditions

Ceperley Variational Methods

First Major QM C Calculation

* PhD thesisof W. McMillan (1964) University of lllinais.

e VMC calculation of ground state of liquid helium 4.

* Applied MC techniques from classical liquid theory.

» Ceperley, Chester and Kalos (1976) aeneralized to fermions.

PHAYSICAL AGVIIW FOLUME B3, YUMIZA P4 hedlil 1ns

Ground State of Liquid He't

W L. Mot
Dipasiicnd of Papilcd, Unsriroily of Miino, !rbgng, (e
(Received 16 November 19864)

The prepertics of 1he geeutd slate aof liguid He' are seodied saing 3 varstional wueve fusction of 18 fars
Moy irgd. The Lenmard-fores 13-6 potential i used with parameters determiced from the gas data b
deBoer wed Mickicls. The configuratios space integrals are performed by 4 Mome Cards techesjue Gor 12
wradl 108 wioms (o s rube wiih pedodie boundary cosditfoss, With fr] mexpl— (26 1000 13 ground.
abale enengy in faund o be — 0733 WM args akom, which & HF 7 above the esperimenial vabee. The Biuid

stictase Tactes wnd 1he Las-pasticle sarrelation funchion ase In ressonshly pood sgrocrsent with the x-ray
wrad meubron scaktering expaeriments.

eZero temperature (single state) method
=Can be generalized to finite temperature by using
“trial” density matrix instead of “trial” wavefunction.
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Notation

Individual coordinate of a particle r,
All 3N coordinates R= (ry,ry, .... Iy)
Total potential energy = V(R)

Kinetic energy :

Hamiltonian: H =T +V
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Variational Monte Carlo (VMC)

Variational Principle. Given an

appropriate trial function: _ R <y |H|y > ,

— Continuous Ev=—F——7+—— 0
— Proper symmetry GjR <yy >

— Normalizable . 5

— Finite variance <2 = OjR<y |H |y > 2
uantum chemistry uses a product of - N Y

gngle particlefun():iions P OjR <yy >

With MC we can use any “computable”
function.

— Sample R from ly | using MCMC. E (R :A@ “(R)Hy (R)EI
— Take average of local energy: _
— Optimizey to get the best upper bound E = < E (R) >y 2 By

Better wavefunction, lower variance!
“Zero variance” principle. (non-classical)
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Liquid helium
the prototypic quantum fluid

e Interatomic potential is known more _
accurately than any other atom because st
electronic excitations are so high. '

e A helium atom is an elementary particle.
A weakly interacting hard sphere.

FiG. L. Tte smmbsmpitical pair peisstnd brieem tes bium
abowse asti] e, Ao af ol [1960]; desdbed les, Leessrd
Jomes 813 patentind wich ¢ = 131 K sl & = 1558 &

<Two isotopes:
«3He (fermion: antisymmetric trial function, spin 1/2)
« 4He(boson: symmetric trial function, spin zero)

V(1) = 4egg—9 asoo

ro &gy
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Helium phase diagram

Because interaction is so weak k |
helium does not crystallize at low
temperatures. Quantum exchange
effects are important -
<Both isotopes are quantum fluids

and become superfluids below a |
critical temperature. 3 b

=One of the goals of computer FIG & The gl fingram of e
simulation is to understand these )

states, and see how they differ from & __ 2 h N2 +V(R)
classical liquids starting from non- T 2m
relativistic Hamiltonian: 2

2m

| (0]
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Trial function for helium 4
xeaSHQw, or pair product

«  Wewant finite varianCe o
energy. y (R=0e"®
*  Whenever 2 atoms get close together i<j
wavefunction should vanish.

«  The pseudopotential u(r) issimilar to E (R = a g\/(l’“) 2l N U(I’,J)H- I a G2

classical potential i<j
. chal energy has the form: — a Niu(ri')
G isthepseudoforce: | ]

If v(r) diverges as @"how should u(r)

diverge? Assume: 2
9 er " =2 (am"“‘l] for n>2
u(r)=arm
) . _n
Gives a cusp condition on u. m= 5" 1
For Lennard-Jones 6-12 potential, h = 1le
Jastrow goes as m=5 m\ 2
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VARIATIONAL MONTE CARLO CODE

call initstate (s old) % Initialize the state
pold= psi2(s_old) Evaluate psi_oial
LOOP |
call sample (s old,s new, T new,1) < Samplenew state
p new= psi2 (s new) Evaluare psi_trial
call sample (s_new,s oldT old0) <—— Find transition prob
A = (p_new/T_new)/(p_old'T_old) for going backwerd
(A > rand () ) { Avceptance prob
s_old=s_new
p_old=p new } - Accepr the move
naccept = naccept +1',l
call HWTEQBS{S old) -+ Eollect stabistics
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Optimization of trial function
1 | & @Hy ()
E(@)=——F———
& @)

%%}; 4 w(R,a)E(R, 3
, / =k

AL/ Eoi WR,a)
B A y Raf
y tooptimizeu(r) using reweighting ~ w(R,a) =
(correlated sampling) P(R)

Statistical accuracy declines away from
&

— SampleRusing P(R)=y %R,a)
Now find minima of the analytic
function E,(a)

Or minimize the variance (more
stable but wavefunctions less
accurate).

E(Ra)=y ‘(R a)Hy (R a)

g ot = Cf

1 W
Nyt =—5———
W,

- Q)o (PxB_)(oD\
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Quantum Crystal Trial Function
y (R=0e""

i<j

Jastrow trial function does not
“freeze” at appropriate density.

Solution isto break spatial ~ A -ulr
symmetry “by hand.s”p y (R)= Of (I’i B Zi)O e w
Introduce a bec lattice ! =)

{Zi} fry=e“
bce has the lowest Madelung . .
energy, but others may have “C” isavariational parameter to be
lower zero point energy. optimized.

Introduce localized one-body

terms (Wannier functions).
Make a Slater determinant
possibly with spin ordering.
More complicated trial

functions and methods are also
possible.

Ceperley Variationa
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Scalar Properties, Static Correlations and
Order Parameters

What do we get out of asimulation? Energy by itself doesn’t tell you very
much.

Other properties

» do NOT have an upper bound property

e Only first order in accuracy

EXAMPLES

» Static properties: pressure, specific heat etc.

» Density

» Pair correlation in real space and fourier space.

e Order parameters and broken symmetry: How to tell aliquid from a
solid

e Specifically quantum: the momentum distribution
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Pair Correlation Function, g(r)

Primary quantity in aliquid is the probability distribution of pairs of
particles. Given a particle at the origin what is the density of
surrounding particles

9(r) = < Sig d (r-rj-1)> (2 WIN?)
Density-density correlation function

From g(r) you can calculate all pair quantities
(potential, pressure, ...)

V=8 v(r,) = - Pl

A function gives more information than a number!
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g(r) inliquid and solid helium

First peak is at inter-particle

spacing. (shell around the
particle)
goesouttor<L/2inperiodic ..

A

boundary conditions.

b

[ na o4 os s

Ce i

(The static) structure factor S(k)
» The Fourier transform of the pair correlation function is the
structure factor
S(k) = <|r >IN (1) “direct”
S(k) =1+ r idrexp(ikr) (g(r)-1) (2 “FT”

» problem with (2) isto extend g(r) to infinity
» S(K) is measured in neutron and X-Ray scattering
experiments.
» Can provide adirect test of the assumed potential.
» Used to see the state of a system:
liquid, solid, glass, gas? (much better than g(r) )

 Order parameter in solid isr swhere G is a particular
wavevector (reciprocal lattice vector).
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Momentum Distribution
*  Momentum distribution

— Classically momentum A R : '
distributionisalwaysa 'I" _‘l
Gaussian E-"-._-_lﬁhh ]

— Non-classical showing effects |
of bose or fermi statistics ° T # _4,';

— Fourier transform isthe single
particle off-diagonal density

1. .
matrix n(r,r)=-gl..dry 1.y (rr..
e Computewith McMillan Method. Z

_fy (.
* For fermions we need to use the y (r ' r2___)
determinant update formulas to find
the effect of the movement of 1
electron.
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Derivation of momentum formula

» Suppose we want the probability n, that a given atom has momentum
hk.

» Find wavefunction in momentum space by FT wrt all the coordinates
and integrating out all but one electron

Pr(k,..k,) = |gpR e sy (R)[
= ¢k Pr(K k0. k)

» Expanding out the square and performing thei ntegralswe get.
d%d’s

n = OWEXF’( ik(r - s))n(r,s) = O(—)ae *n(r)
Where:
n(r,s) :6(‘§lr2...drNy T(ronery)y (Sirery)

(states occupied with the Boltzmann distribution.)
For a homogeneous system, n(r,s)=n(|r-s|)
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Calculation of n(r)

Naive procedure
» Generate sample with VMC

» Take one particle at random and
displace by adistancer.

» Findratio of trial function for
old and new position.

* 0O(1) work/1 distance

n(r.r’) = ¢gr...dny “(r 0.y (...

:<y*(r‘,r2,...)>
y(rr,,..)

McMillan procedure

» Generate sample with VMC

» Determine change of trial
function if each particleis
destroyed. &,

* Insert anew particleat a
random position in the box and
determine trial function for the
insertion “b”

» For each k perform the average
b/a, and add to n(|r-r,|).

* Repeat for O(N) insertions.

«  O(N) work/O(N?) distances
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The électron gas
D. M. Ceperley, Phys. Rev. B 18, 3126 (1978)

Standard model for
electronsin metals

Basisof DFT.

H:-Zh—é l§|i2+él

i i<j T

Characterized by 2
dimensionless 10
parameters:

Elactron In ratale [Farmi liguid)

o
Q
~

=
-

S

— Density

Elaciron dansity (om 7l
=

Polarizad Auikad™

What isenergy?

When does it freeze? 1o
What is spin
polarization? 2

Wigner crysal

Claesicd plasma

What are properties?

G< Is G %gagg!m%gﬁethods
G =175 classical melting

i0 100
Tampersure ()

log(G)

L0003




Fermions. antisymmetric trial function

 Atmeanfield level the

wavefunction is a Slater ikr,
determinant. Orbitals for Y S(R) Det{e Jhi (S J)}

homogenous systems are afilled PBC: kxL =2pn +{q}

set of plane waves.

¢ We can compute this energy ~
analytically (HF). Tk giu(m)

» Toinclude correlation we Y «(R) = Det{e '}e
multiply by a pseudopotential. We
need M C to evaluate properties.

¢ New feature: how to compute the

Sater-Jastrow trial function.

derivatives of a deteminant and det(fk (rJT)) = det(f ) (r,- ))é_ f, (rJT )M;}
sample the determinant. Use tricks K
from linear algebra. 1 fdet(M) —triv 2 IMU

+ Reduces complexity to O(N?). det(M) Ta T fa
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Jastrow factor for the e-gas

* Look at local energy either in r space or k-space:
* r-space as 2 electrons get close gives cusp condition: du/dr|,=-1
» K-gpace, charge-sloshing or plasmon modes.
v
ol ey
» Can combine 2 exact properties in the Gaskell form. Write E,, in terms structure
factor making “random phase approximation.” (RPA).

2ru, =- ¢+ [+ lvkkz S, =ideal structure factor
k
*  Optimization can hardly improve thisform for the e-gasin either 2 or 3 dimensions.
RPA works better for trial function than for the energy.
 NEED EWALD SUMS because potential trial function islong range, it also decays

as 1/r, but it is not asimple power.
i r.1 3D Long range properties important
. 1 =Give rise to dielectric properties
lim, gy u(r) = Il ri? 2D o .
. <Energy is insensitive to u, at
Llog(r) 1D small k
eThose modes converge t—1/k?2
Ceperley Varlational Methods
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Charged systems

How can we handle charged systems?

Just treat like short-ranged potential: cutoff potential at r>L/2.
Problems:

— Effect of discontinuity never disappears ( (1/r) (r?) gets bigger.

— Will violate Stillinger-L ovett conditions because Poisson equation
isnot satisfied

— Even aproblem with dipolar forces.

Image potential solvesthis:
V= Sv(r-r+nL)

— But summation diverges. We need toresum This gives the ewad
image potential.

— For one component system we have to add a background to make
it neutral.

— Eventhetrial function islong ranged and needs to be resummed.

Ceperley Variational Methods

Ewald summation method

Key ideaisto split potential into k-space part and real-
space part. We can do since FT islinear.
V= éf (k-ri+nlL)
i<j,L

iker;

V= éfk(|rk|2-N) Wherer, =g
k i
T

and j :V—ngré"f(r)

2
For f (nN=e’lrb j :—4if

Hence converges slowly at large r (in r-space)
And at large k (in k-space)

Ceperley Variational Methods
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Classic Ewald

» Split up using Gaussian charge
distribution

f(r) :w decaysfast at large r

- (kI & )2

f, =252 decaysfast at large k
k = convergence parameter

 |If we make it large enough we can
use the minimum image potential in
r-space. __

. . Vdipole T A L AN\A
» Extraterm for insulators: (2e +HW
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How to do it

e r-space part same as short-ranged potential
e k-space part:
1. Compute exp(ikyx)=(cos (ikyX), sin (ikyx)), ky=2r/L Vi
2. Compute powers exp(i2ky %)= exp(ikyx )* exp(iky %) etc.
Thisway we get all values of exp(ik - r;) with just
multiplications.
3. Sum over particlesto getr dl k.
4. Sum over k to get the potentials.
5. Forces can also be done by taking gradients.
«  Constant termsto be added.
e Checks: perfect lattice: V=-1.4186487/a (cubic lattice).

Ceperley Variational Methods

O(N3?)
O(N)

O(N3?2)
O(N3?2)
O(N?)

O(N3/2)
O(1)
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Wavefunctions beyond Jastrow smoothing

Use method of residuals construct f . (R) »f (R)e" SoH o>
a seguence of increasingly better

trial wave functions. Justify from  _ ak
the Importance sampled DMC. 0~€
Zeroth order isHartree-Fock E=V(R
wavefunction _U(R

: . o f =f e
First order is Slater-Jastrow pair 1770

gives an analytic formula)

wavefunction (RPA for electrons E=U(R- [NW(R)]Z +ié. kj . (rj ) NJ-Y( R))
Second order is3-body backflow :

wavefunction ,
Three-body formislike a squared 1
force. It isabosonic term that does a
not change the nodes. s

exp{é_ [é. Xij(rij)(ri - rj):f}

Ceperley Variational Methods

Backflow wave function

ikir; ik;X;
Backflow means change the Det{e "'} P Det{e "'}
coordinates to quasi- coordinates. _ o
X; =1 +g h;(r)(r - r;)
i

L eads to a much improved energy
and to improvement in nodal

surfaces. Couples nodal surfaces 3DEG
together.
1.0 T T T T
& -
Kwon PRB 58, 6800 (1998). .l . |
06}
# L]
; 04 p g &
]
D2 E ' & i
0o .

0.0 5.0 o 150 200 250

Ceperley Variauunia wicuus
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Dependence of energy on wavefunction
3d Electron fluid at a density r;=10
Kwon, Ceperley, Martin, Phys. Rev. B58,6800, 1998

Wavefunctions -0.107
— Slater-Jastrow (SJ) \_\
— three-body (3) - -010757

backflow (BF)

>

o
_ fixed-node (FN) W
Energy <f |H| f> convergesto gr
state <0.1085

Variance <f [H-EJ? f> to zero. :

Using 3B-BF gains afactor of 4.
Using DMC gains afactor of 4.

Ceperley Variational Methods

0

0.05 0.1

Variance

Twist averaged boundary conditions

In periodic boundary conditions (G
point), the wavefunction is
periodicb Largefinite size effectsfor

ikr

j =e

kKL =2pn +q

metals because of shell effects.

Fermi liquid theory can be used to a

correct the properties.

In twist averaged BC we use an

arbitrary phaseq asr ® r+L

If oneintegrates over all phasesthe
momentum distribution changes from
alattice of k-vectorsto afermi sea

Y(x +L) = €Y (X)

o ~_ 1 "
Smaller finite size effects A= o] od% (Y, AY,)
p) -
v T o
i PBC
: .| TABC
15 w_‘.,:
Copert 1078 E— .
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Brief History of Ferromagnetism
in electron gas

What is polarization state of fermi liquid at low density?

N._ - N-

7 = ——
N +N_

Bloch 1929 got polarization from exchange interaction:
- r;>54 3D
- 1,>20 2D
Stoner 1939: include electron screening: contact interaction
Herring 1960
Ceperley-Alder 1980 r,>20is partially polarized
Y oung-Fisk experiment on doped CaBg 1999 r,~25.

Ortiz-Balone 1999 : ferromagnetism of e gas at r:>20.
Zong et al  Redo QM C with backflow nodes and TABC.

Ceperley Variational Methods

T=0 calculations ‘ Ceperley, Alder *

80

3d electron gas

W|th FN-DMC ' T T 1 T 1

r<20 unpolarized
20<r,<100 partial
100<rs Wigner crystal

Crystal

=
o Hakic Wk Forreagams

More recent calculations of Ortiz, Harris ﬂE T
and Balone PRL 82, 5317 (99) confirm this g %
result but get transition to crystal at s i —
r.=65 Euﬂ T e
s - 5

L -

i

=

4| "

L& + . ——

Ceperley Variational Method ““ ,}'2 u"* o8 “

1

T T !

1 |

0 20 40 60 N 100 120 140 160 180 200
Energies are very close together at low dengity!

3
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Polarization of 3DEG

We see second order partially
polarized transition at r;=52

Is the Stoner model (replace
interaction with a contact potential)
appropriate? Screening killslong
range interaction.

Wigner Crystal at r,=105

«Twist averaging makes calculation
possible--much smaller size effects.
«Jastrow wavefunctions favor the
ferromagnetic phase.

<Backflow 3-body wavefunctions
more paramagnetic

e e
_ 40
— 0.02 }
8 50
Polarization i o I
0.8 o 001 I g
- trangition T A A8
P 170
I fim : A i
! T 0 p———— 485
| —_— !
T AP [PONINE) FAVEP Eravars wrurie
0:5 : 0 D2 4 D8 08
T ol |>l.2 il il ariational f‘
Phase Diagram
T |
¢ Partla“y pOIanzed 10% electrons in metals
phase at low density. degenerate Fermi liquid
1022
» But at lower energy =
and density than E o
before. . ortiz —.
W - Lo
* A_S accuracy getS E N polarized [luid _.r;
higher, polarized S gl )
phase shrinks B i S
5 jom
L Wigher
¢ Red Wgerns ha\/e 1007 crystal _’? ' classical
different units. zf/ plasma
|l:||ﬁ A= | .-'z. .". | ! o
001 0.1 1 10 100 1000
T (K1
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Summary of T=0 methods:

Variational (VMC), Fixed-node(FN), Released-node(RN)

1.E+01
) Simpletria function
1.E+00 A
_AVMC __FN
= 1.E-01 1
8
5 1E-02- [ - -
% Better trial function -
1E-034 \[\g
1E-04 1 &][P][}!)ﬂﬂh’ﬂ@ RN 8
1E-05+

1.E+00 1.E+01 1E+02 1E+03 1E+04 1E+05 1.E+06 1.E+07

computer time (sec)
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The Variational Method

Approximate the solution to an eigenvalue problem with a
trial function

Upper bound guaranteed.

Complexity (scaling vs computer time) reasonable
You learn how important terms in the trial function are
Problems:

— What goes in, comes out.

— How do access convergence?

— Biasto simple states versus complex states
* crystal vsliquid
* Polarized vs unpolarized

— Energy is accurate, other properties less so

Ceperley Variational Methods
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