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Ceperley Variational Methods

Variational Monte Carlo

• Historically first quantum simulation method
• Features of VMC
• Slater Jastrow trial function
• Calculations of properties: g(r) S(k) n(k).
• Examples: liquid helium and electron gas.
• Quantum solids 
• Ewald Sums for Charged systems 
• Trial Function beyond Slater-Jastrow: back flow and 3-

body
• Twist Averaged Boundary Conditions

Ceperley Variational Methods

First Major QMC Calculation
• PhD thesis of W. McMillan (1964) University of Illinois.
• VMC calculation of ground state of liquid helium 4.
• Applied MC techniques from classical liquid theory.
• Ceperley, Chester and Kalos (1976) generalized to fermions.

•Zero temperature (single state) method

•Can be generalized to finite temperature by using 
“trial” density matrix instead of “trial” wavefunction.   
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Ceperley Variational Methods

Notation

• Individual coordinate of a particle  ri

• All 3N coordinates   R= (r1,r2, …. rN)
• Total potential energy =   V(R)

• Kinetic energy :

• Hamiltonian :
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Ceperley Variational Methods

Variational Monte Carlo (VMC)
• Variational Principle. Given an 

appropriate trial function:
– Continuous
– Proper symmetry
– Normalizable
– Finite variance

• Quantum chemistry uses a product of 
single particle functions

• With MC we can use any “computable” 
function.

– Sample  R from |ψ |2 using MCMC.
– Take average of local energy:
– Optimize ψ to get the best upper bound  

• Better wavefunction, lower variance! 
“Zero variance” principle. (non-classical) 
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Liquid helium
the prototypic quantum fluid

• Interatomic potential is known more 
accurately than any other atom because 
electronic excitations are so high. 

• A helium atom is an elementary particle. 
A weakly interacting hard sphere.

•Two isotopes: 
• 3He (fermion: antisymmetric trial function, spin 1/2) 

• 4He(boson: symmetric trial function, spin zero)
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Helium phase diagram

•Because interaction is so weak 
helium does not crystallize at low 
temperatures. Quantum exchange 
effects are important
•Both isotopes are quantum fluids 
and become superfluids below a 
critical temperature.

•One of the goals of computer 
simulation is to understand these 
states, and see how they differ from 
classical liquids starting from non-
relativistic Hamiltonian:
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Trial function for helium 4
“Jastrow” or pair product• We want finite variance of the local 

energy.
• Whenever 2 atoms get close together 

wavefunction should vanish.
• The pseudopotential u(r) is similar to 

classical potential
• Local energy has the form:

G is the pseudoforce:

If v(r) diverges as εr-n how should u(r) 
diverge?  Assume:

U(r)=αr-m

Gives a cusp condition on u.

For Lennard-Jones 6-12 potential, 
Jastrow goes as m=5
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Optimization of trial function

• Try to optimize u(r) using reweighting
(correlated sampling)
– Sample R using  P(R)= ψ2(R,a0)
– Now find minima of the analytic 

function Ev(a)
– Or minimize the variance (more 

stable but wavefunctions less 
accurate).

• Statistical accuracy declines away from 
a0.
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Ceperley Variational Methods

Quantum Crystal Trial Function
• Jastrow trial function does not 

“freeze” at appropriate density.
• Solution is to break spatial 

symmetry “by hand.”
• Introduce a bcc lattice 

{Zi}
• bcc has the lowest Madelung 

energy, but others may have 
lower zero point energy.

• Introduce localized one-body 
terms (Wannier functions).

• Make a Slater determinant 
possibly with spin ordering.

• More complicated trial 
functions and methods are also 
possible.

“C” is a variational parameter to be 
optimized.
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Scalar Properties, Static Correlations and 
Order Parameters

What do we get out of a simulation?  Energy by itself doesn’t tell you very 
much.

Other properties 
• do NOT have an upper bound property
• Only first order in accuracy

EXAMPLES
• Static properties: pressure, specific heat etc.
• Density
• Pair correlation in real space and fourier space.
• Order parameters and broken symmetry: How to tell a liquid from a 

solid
• Specifically quantum: the momentum distribution

Ceperley Variational Methods

Pair Correlation Function, g(r)

Primary quantity in a liquid is the probability distribution of pairs of 
particles. Given a particle at the origin what is the density of
surrounding particles

g(r) = < Σi<j δ (ri-rj-r)> (2 Ω/N2)
Density-density correlation function

From g(r) you can calculate all pair quantities 
(potential, pressure, …)

A function gives more information than a number!
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g(r) in liquid and solid helium
• First peak is at inter-particle 

spacing. (shell around the 
particle)

• goes out to r<L/2 in periodic 
boundary conditions.

Ceperley Variational Methods

(The static) structure factor  S(k)
• The Fourier transform of the pair correlation function is the 

structure factor 
S(k) = <|ρk|2>/N (1) “direct”
S(k) = 1 + ρ dr exp(ikr) (g(r)-1) (2) “FT”

• problem with (2) is to extend  g(r) to infinity

• S(K) is measured in neutron and X-Ray scattering 
experiments. 

• Can provide a direct test of  the assumed potential.
• Used to see the state of a system: 

liquid, solid, glass, gas? (much better than g(r) )
• Order parameter in solid is ρG where G is a particular 

wavevector (reciprocal lattice vector).
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Momentum Distribution
• Momentum distribution

– Classically momentum 
distribution is always a 
Gaussian

– Non-classical showing effects 
of bose or fermi statistics

– Fourier transform is the single 
particle off-diagonal density 
matrix

• Compute with McMillan Method.

• For fermions we need to use the 
determinant update formulas to find 
the effect of the movement of 1 
electron.
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Derivation of momentum formula
• Suppose we want the probability nk that a given atom has momentum 

hk.
• Find wavefunction in momentum space by FT wrt all the coordinates 

and integrating out all but one electron

• Expanding out the square and performing the integrals we get.

Where:

(states occupied with the Boltzmann distribution.)
For a homogeneous system, n(r,s)=n(|r-s|)
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Calculation of n(r)
Naïve procedure

• Generate sample with VMC
• Take one particle at random and 

displace by a distance r.
• Find ratio of trial function for 

old and new position.
• O(1) work/1 distance

McMillan procedure

• Generate sample with VMC
• Determine change of trial 

function if each particle is 
destroyed.  ak

• Insert a new particle at a 
random position in the box and 
determine trial function for the 
insertion “b”

• For each k perform the average 
b/ak and add to n(|r-rk|).

• Repeat for O(N) insertions.
• O(N) work/O(N2) distances
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The electron gas
D. M. Ceperley, Phys. Rev. B 18, 3126 (1978)

• Standard model for 
electrons in metals

• Basis of DFT.
• Characterized by 2 

dimensionless 
parameters: 
– Density
– Temperature

• What is energy?
• When does it freeze?
• What is spin 

polarization?
• What are properties?
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Fermions: antisymmetric trial function
• At mean field level the

wavefunction is a Slater 
determinant. Orbitals for 
homogenous systems are a filled 
set of plane waves.

• We can compute this energy 
analytically (HF).

• To include correlation we 
multiply by a pseudopotential. We 
need MC to evaluate properties.

• New feature: how to compute the 
derivatives of a deteminant and 
sample the determinant. Use tricks 
from linear algebra.

• Reduces complexity to O(N2).
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Jastrow factor for the e-gas
• Look at local energy either in r space or k-space:
• r-space as 2 electrons get close gives cusp condition: du/dr|0=-1
• K-space, charge-sloshing or plasmon modes.

• Can combine 2 exact properties in the Gaskell form. Write EV in terms structure 
factor  making “random phase approximation.” (RPA).

• Optimization can hardly improve  this form for the e-gas in either 2 or 3 dimensions. 
RPA works better for trial function than for the energy.

• NEED EWALD SUMS because potential trial function is long range, it also decays 
as 1/r, but it is not a simple power.
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Long range properties important 

•Give rise to dielectric properties

•Energy is insensitive to uk at 
small k

•Those modes converge t~1/k2
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Charged systems
How can we handle charged systems?

• Just treat like short-ranged potential: cutoff potential at r>L/2. 
Problems:
– Effect of discontinuity never disappears ( (1/r) (r2) gets bigger.
– Will violate Stillinger-Lovett conditions because Poisson equation 

is not satisfied
– Even a problem with dipolar forces.

• Image potential solves this:
VI =   Σ v(ri-rj+nL)

– But summation diverges. We need to resum. This gives the ewald
image potential.

– For one component system we have to add a background to make 
it neutral.

– Even the trial function is long ranged and needs to be resummed.

Ceperley Variational Methods

Ewald summation method

• Key idea is to split potential into k-space part and real-
space part. We can do since FT is linear.

• Hence converges slowly at large r (in r-space)
• And at large k (in k-space)
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Classic Ewald

• Split up using Gaussian charge 
distribution

• If we make it large enough we can 
use the minimum image potential in 
r-space.

• Extra term for insulators: 

2( / 2 )

2
4

( )
( )  decays fast at large r

 decays fast at large k

= convergence parameter 

ke
k k

erfc r
r

r
κπ

κ
φ

φ

κ

−

=

=

2
2

(2 1)dipole i
i

V π µ
ε

=
+ Ω ∑

Ceperley Variational Methods

How to do it
• r-space part same as short-ranged potential

• k-space part:
1. Compute exp(ik0 xi)=(cos (ik0 xi), sin (ik0 xi)),  k0=2π/L ∀ i

2. Compute powers exp(i2k0 xi)= exp(ik0 xi )*exp(ik0 xi) etc.  
This way we get all values of exp(ik . ri) with just 
multiplications.

3. Sum over particles to get ρk all k.
4. Sum over k to get the potentials.
5. Forces can also be done by taking gradients.

• Constant terms to be added.
• Checks: perfect lattice: V=-1.4186487/a (cubic lattice).

O(N3/2)

O(N)

O(N3/2)

O(N3/2)
O(N1/2)

O(N3/2)
O(1)
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Wavefunctions beyond Jastrow

• Use method of residuals construct 
a sequence of increasingly better 
trial wave functions.  Justify from 
the Importance sampled DMC.

• Zeroth order is Hartree-Fock 
wavefunction

• First order is Slater-Jastrow pair 
wavefunction (RPA for electrons 
gives an analytic formula)

• Second order is 3-body backflow
wavefunction

• Three-body  form is like a squared 
force. It is a bosonic term that does 
not change the nodes.
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Backflow wave function

• Backflow means change the 
coordinates to quasi- coordinates. 

• Leads to a much improved energy 
and to improvement in nodal 
surfaces. Couples nodal surfaces 
together.

Kwon PRB 58, 6800 (1998).
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Dependence of energy on wavefunction
3d Electron fluid at a density rs=10

Kwon, Ceperley, Martin, Phys. Rev. B58,6800, 1998

• Wavefunctions

– Slater-Jastrow (SJ)
– three-body (3)
– backflow (BF)
– fixed-node (FN)

• Energy <φ |H| φ> converges to ground 
state

• Variance <φ [H-E]2 φ> to zero.

• Using 3B-BF gains a factor of 4.
• Using DMC gains a factor of 4.
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Twist averaged boundary conditions
• In periodic boundary conditions (Γ

point), the wavefunction is 
periodic⇒Large finite size effects for 
metals because of shell effects.

• Fermi liquid theory can be used to 
correct the properties. 

• In twist averaged BC we use an 
arbitrary phase θ as r →r+L

• If one integrates over all phases the 
momentum distribution changes from 
a lattice of k-vectors to a fermi sea.

• Smaller finite size effects
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Brief History of Ferromagnetism 
in electron gas

What is polarization state of fermi liquid at low density?

• Bloch 1929   got polarization from exchange interaction:
– rs > 5.4  3D
– rs > 2.0  2D

• Stoner 1939:  include electron screening: contact interaction
• Herring 1960
• Ceperley-Alder 1980    rs >20 is partially polarized
• Young-Fisk experiment on doped CaB6 1999 rs~25.
• Ortiz-Balone 1999 : ferromagnetism of e gas at rs>20. 
• Zong et al   Redo QMC with backflow nodes and TABC. 
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3d electron gas
• rs<20 unpolarized
• 20<rs<100 partial
• 100<rs Wigner crystal

Ceperley, Alder ‘80T=0 calculations 
with FN-DMC

Energies are very close together at low density!

More recent calculations of Ortiz, Harris 
and Balone PRL 82, 5317 (99) confirm this 
result but get transition to crystal at
rs=65.
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Polarization of 3DEG

Polarization

transition

• We see second order partially 
polarized transition at rs=52

• Is the Stoner model (replace 
interaction with a contact potential) 
appropriate? Screening kills long 
range interaction.

• Wigner Crystal at rs=105

•Twist averaging makes calculation 
possible--much smaller size effects.
•Jastrow wavefunctions favor the 
ferromagnetic phase.
•Backflow 3-body wavefunctions
more paramagnetic

Ceperley Variational Methods

Phase Diagram

• Partially polarized 
phase at low density.

• But at lower energy 
and density than 
before.

• As accuracy gets 
higher, polarized 
phase shrinks

• Real systems have 
different units.
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Summary of  T=0 methods:Summary of  T=0 methods:

Variational(VMC), Fixed-node(FN), Released-node(RN)
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The Variational Method

• Approximate the solution to an eigenvalue problem with a  
trial function

• Upper bound guaranteed.
• Complexity (scaling vs computer time) reasonable
• You learn how important terms in the trial function are
• Problems:

– What goes in, comes out.
– How do access convergence?
– Bias to simple states versus complex states 

• crystal vs liquid
• Polarized vs unpolarized

– Energy is accurate, other properties less so


