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Summary and problems with 
variational methods

• Powerful method since you 
can use any trial function

• Scaling (computational 
effort vs. size) is almost 
classical

• Learn directly about what 
works in wavefunctions

• No sign problem

• Optimization is time consuming
• Energy is insensitive to order 

parameter
• Non-energetic properties are 

less accurate. O(1) vs. O(2) for 
energy.

• Difficult to find out how 
accurate results are.

• Favors simple states over more 
complicated states, e.g.
– Solid over liquid
– Polarized over unpolarized

What goes into the trial wave function comes out! “GIGO”

We need a more automatic method! Projector Monte Carlo
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Summary of Variational (VMC)
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Dependence of energy on 
wavefunction

3d Electron fluid at a density rs=10
Kwon, Ceperley, Martin, Phys. Rev. B58,6800, 1998

• Wavefunctions
– Slater-Jastrow (SJ)
– three-body (3)
– backflow (BF)
– fixed-node (FN)

• Energy <φ |H| φ> converges to 
ground state

• Variance <φ [H-E]2 φ> to zero.
• Using 3B-BF gains a factor of 4.
• Using DMC gains a factor of 4.
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Projector Monte Carlo

•Originally suggested by Fermi and implemented in 1950 by 
Donsker and Kac for H atom.

•Practical methods and application developed by Kalos:
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Projector Monte Carlo
(variants: Green’s function MC, Diffusion MC, Reptation MC)

• Project single state using the Hamiltonian

• We show that this is a diffusion + branching operator.  
Maybe we can interpret as a probability. But is this a 
probability?

• Yes! for bosons since ground state can be made real 
and non-negative. 

• But all excited states must have sign changes. This is 
the “sign problem.”

• For efficiency we do “importance sampling.”
• Avoid sign problem with the fixed-node method.

T(H E )t( ) (0)t eφ φ− −=
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Diffusion Monte Carlo

• How do we analyze 
this operator?

• Expand into exact 
eigenstates of H.

• Then the evolution is 
simple in this basis.

• Long time limit is 
lowest energy state 
that overlaps with the 
initial state, usually 
the ground state.

• How to carry out on 
the computer?
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The Green’s function
• Operator notation

• We define the coordinate green’s function (or density 
matrix by:

Roughly the probability density of going from R0 to R in 
“time” t.  (but is it a probability?)

• Properties:
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Froebinius Theorem
When can we consider the wavefunction as a probability? 

First how about the Green’s function?

But if we start with a non-negative function it will stay 
non-negative, and can be interpreted as a p.d.f.

Not true for all Hamiltonians (require off-diagonal matrix 
elements to be non-positive.) (not pseudopotentials, not 
magnetic fields.)

Only true for the bosonic ground state.
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Monte Carlo process
• Now consider the variable “t” as a 

continuous time (it is really 
imaginary time).

• Take derivative with respect to time 
to get evolution.

• This is a diffusion + branching 
process.

• Justify in terms of Trotter’s 
theorem.

Requires interpretation of the 
wavefunction as a probability 
density.

But is it?  Only in the boson ground 
state. Otherwise there are nodes. 
Come back to later.
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Trotter’s theorem
• How do we find the solution of:

• The operator solution is:

• Trotter’s theorem (1959):

• Assumes that A,B and A+B are reasonable operators.

• This means we just have to figure out what each operator 
does independently and then alternate their effect.  This is 
rigorous in the limit as n→∞.

• In the DMC case A is diffusion operator, B is a branching 
operator.

• Just like “molecular dynamics” At small time we evaluate each 
operator separately.
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Evaluation of kinetic density matrix
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Putting this together

• n is number of time slices.
• τ is the “time-step”

• V is “diagonal”

• Error at finite n comes from commutator is roughly:

• Diffusion preserves normalization but potential does not!
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Basic DMC algorithm
• Construct an ensemble (population P(0)) sampled from 

the trial wavefunction. {R1,R2,…,RP}
• Go through ensemble and diffuse each one (timestep τ)

• number of copies=
• Trial energy ET adjusted to keep population fixed.

• Problems:
– Branching is uncontrolled
– Population unstable
– What do we do about fermi statistics?
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Sampling the normal distribution
• Inverse mapping is a little slow, also of infinite range.
• Trick: generate 2 at a time: r=(x,y)

• Or sample angle using rejection technique:
– Sample (x,y) in square
– Accept if x2+y2 <1
– Normalize to get the correct r.
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Code to sample normal distribution

Normal distribution <x>=x0 and <(x-x0)2>=σ2

1 x=sprng()-0.5
y=sprng()-0.5
r2=x*x+y*y
if (r2>0.25) go to 1
radius= sigma*sqrt (-2*ln(sprng())/r2)
xnormal=x0+x*radius
ynormal=y0+y*radius

•No trig functions, 1 log, 1 sqrt, 1 divide
•Mixes up regularity of random numbers
•Efficiency of angle generation is 4/π.

•Gets 2 ndrn’s   each time.
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Population Bias

• Having the right trial energy guarantees that population 
will on the average be stable, but fluctuations will 
always cause the population to either grow too large or 
too small. 

• Various ways to control the population
• Suppose P0 is the desired population and P(t) is the 

current population.  How much do we have to adjust ET
to make P(t+T)=P 0?

• Feedback procedure:
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•There will be a (small) bias in the energy caused by a 
limited population.
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Importance Sampling
Kalos 1970, Ceperley 1979

• Why should we sample the wavefunction? The physically 
correct pdf is |φ|2.

• Importance sample (multiply) by trial wave function.

Evolution = diffusion    + drift +         branching
• Use accept/reject step for more accurate evolution.

make acceptance ratio>99% . Determines time step.
• We have three terms in the evolution equation. Trotter’s 

theorem still applies.
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Brownian Dynamics
Consider a big molecule in a solvent. In the high viscosity 

limit the “master equation” (Smoluchowski or Fokker-
Planck eq.) is:
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Diffusion Quantum Monte Carlo without branching is the same 
as Brownian Dynamics.  Use same techniques.
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Green’s function for a gradient
What is Green’s function for the operator?

This operator just causes probability distribution to drift in 
the direction of F.

Smoluchowski equation for Brownian motion it was the 
effect of gravitational field on the motion of colloids.

In practice, we limit the gradient so the walk is not pushed 
too far.

variables separate to 1D problems
Evolution equation for Green's function:
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• To the pure diffusion algorithm we have added a drift step 
that pushes the random walk in directions of increasing trial 
function:

• Branching is now controlled by the local energy

• Because of zero variance principle, fluctuations are controlled.
• Cusp condition can limit infinities coming from singular 

potentials.
• We still determine ET by keeping asymptotic population stable.

• Must have accurate “time” evolution.  Adding accept/reject 
step is a major improvement.
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• Importanced sampled Green’s function:

• Exact property of DMC Green’s function

• We enforce detailed balance to decrease time step 
errors.

• VMC satisfies detailed balance.
• Typically we choose time step to have 99% acceptance 

ratio.
• Method gives exact result if either time step is zero or

trial function is exact.
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Schematic of DMC
Ensemble evolves 

according to

• Diffusion
• Drift
• branching

ensembleensemble
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Mixed estimators
• Problem is that PMC 

samples the wrong 
distribution.

• OK for the energy
• Linear extrapolation 

helps correct this 
systematic error

• Other solutions:

– Maximum overlap
– Forward walking
– Reptation/path 
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Forward Walking
Kalos et al. 1974.

• Let’s calculate the average population resulting from DMC 
starting from a single point R0 after a time `t’.

• We can estimate the correction to the mixed estimator by 
weighting with the number of descendants of a given 
configuration.

• Problem: the fluctuations in the weights eventually diverge.
Don’t make ‘t’ too large.
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Fusion sticking coefficient
Phys. Rev. A 31, 1999 (1985).

• Consider the  3 body system (µ d t)

• For the sticking coefficient, we need the exact
wavefunction at the point where 2 nuclei are at the 
same position. (this is a singular point)

( )1 2 3,r r rψ =
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Other projector functions can be used

• Common effect on long-time (iteration) limit.
• 3rd choice generates a Krylov sequence. Only works for 

bounded spectra such as a lattice model.
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Fermions?
• How can we do fermion simulations?  The initial condition can 

be made real but not positive (for more than 1 electron in the 
same spin state)

• In transient estimate or released-node methods one carries 
along the sign as a weight and samples the modulus.

• Do not forbid crossing of the nodes, but carry along sign when 
walks cross.

• What’s wrong with node release:
– Because walks don’t die at the nodes, the computational 

effort increases (bosonic noise)
– The signal is in the cancellation which dominates

Monte Carlo can add but not subtract

ˆ(H E ) t( ) sign( ( ,0))| ( ,0)|Tt e R Rφ φ φ− −=
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Transient Estimate Approach

• ψ(β)  converges to the exact ground state

• E is an upper bound converging to the exact answer 
monotonically
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Model fermion problem: Particle in a boxModel fermion problem: Particle in a box
Symmetric potential: V(r) =V(-r) 

Antisymmetric state:  φ(r)=-φ(-r)

Initial (trial) state Final (exact) state

Sign of walkers fixed by initial position. They are allowed to diffuse freely.
f(r)= number of positive-negative walkers. Node is dynamically established by 
diffusion process. (cancellation of positive and negative walkers.)

Positive walkers

Negative walkers

Node
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∑
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Scaling in Released-Node

• At any point, positive and negative walkers will tend to cancel 
so the signal is drown out by the fluctuations.

• Signal/noise ratio is : t=projection time
EF and EB are Fermion, Bose energy (proportional to N)

• Converges but at a slower rate. Higher accuracy, larger t.
• For general excited states:

Exponential complexity!
• Not a fermion problem but an excited state problem.
• Cancellation is difficult in high dimensions. 

Initial distribution Later distribution
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Exact fermion calculations
• Possible for the electron 

gas for up to 60 
electrons.

• 2DEG at  rs=1  N=26

• Transient estimate 
calculation with SJ and 
BF-3B trial functions.

tH
T Te−Ψ Ψ
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General statement of the General statement of the 
“fermion problem”“fermion problem”

• Given a system with N fermions and a known 
Hamiltonian and a property O. (usually the energy).

• How much time T will it take to estimate O to an 
accuracy ε? How does T scale with N and ε?

• If you can map the quantum system onto an equivalent 
problem in classical statistical mechanics then:

2NT −∝ εα
With 0 <α < 4 

This would be a “solved” quantum problem!
•All approximations must be controlled! 
•Algebraic scaling in N!
e.g.  properties of Boltzmann or Bose systems in equilibrium.

Ceperley  Projector Monte Carlo

“Solved Problems”

• 1-D problem. (simply forbid exchanges)
• Bosons and Boltzmanons at any temperature
• Some lattice models: Heisenberg model, 1/2 filled Hubbard 

model on bipartite lattice (Hirsch)
• Spin symmetric systems with purely attractive interactions: 

u<0 Hubbard model, nuclear Gaussian model.
• Harmonic oscillators or systems with many symmetries.
• Any problem with <i|H|j> ≤0 
• Fermions in special boxes
• Other lattice models

• Kalos and coworkers have invented a pairing method but it is 
not clear whether it is approximation free and stable.
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The sign problem

• The fermion problem is intellectually and technologically 
very important.

• Progress is possible but danger-the problem maybe 
more subtle than you first might think. New ideas are 
needed.

• No fermion methods are perfect but QMC is competitive 
with other methods and more general.

• The fermion problem is one of a group of related 
problems  in quantum mechanics (e.g dynamics).  

• Feynman argues that general many-body quantum 
simulation is exponentially slow on a classical computer. 

• Maybe we have to “solve” quantum problems using 
“analog” quantum computers: programmable quantum 
computers that can emulate any quantum system. 

Ceperley  Projector Monte Carlo

Fixed-node method
• Initial distribution is a pdf.  

It comes from a VMC simulation.
• Drift term pushes walks away 

from the nodes.
• Impose the condition:
• This is the fixed-node BC

• Will give an upper bound to the 
exact energy, the best upper 
bound consistent with the FNBC.
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•f(R,t) has a discontinuous gradient at the nodal location.
•Accurate method because Bose correlations are done exactly. 
•Scales well, like the VMC method, as N3. Classical complexity.
•Can be generalized from the continuum to lattice finite 
temperature, magnetic fields, …

•One needs trial functions with accurate nodes.
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Proof of fixed-node theorem
• Suppose we solve S.E. in a subvolume V determined by 

the nodes of an antisymetric trial function.  
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Hence the extend s
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φ φ
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olution is non-zero.
Evaluate the variational energy the extended trial function.
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Edges of volumes do not contribute to the integral 
    s
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ince the extend solution vanishes there.
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Nodal PropertiesNodal Properties

If we know the sign of the exact wavefunction (the nodes), we 
can solve the fermion problem with the fixed-node method.

• If φ(R) is real, nodes are φ(R)=0 where R is the 3N
dimensional vector. 

• Nodes are a 3N-1 dimensional surface. (Do not confuse with  
single particle orbital nodes!)

• Coincidence points ri = rj are  3N-3 dimensional hyper-planes
• In 1 spatial dimension these “points” exhaust the nodes:

fermion problem is easy to solve in 1D   with the “no crossing 
rule.”

• Coincidence points (and other symmetries) only constrain 
nodes in higher dimensions, they do not determine them.

• The nodal surfaces define nodal volumes. How many nodal 
volumes are there? Conjecture: there are typically only 2 
different volumes (+ and -) except in 1D. (but only 
demonstrated for free particles.)
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Nodal Picture: 
2d slice thru 322d space

• Free electron

• Other electrons

• Nodes pass thru 
their positions 

• Divides space 
into 2 regions

• Wavelength 
given by 
interparticle 
spacing
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SPIN?
• How do we treat spin in QMC?

• For extended systems we use the Sz representation.
• We have a fixed number of up and down electrons and 

we antisymmetrize among electrons with the same spin.
• This leads to 2 Slater determinants.
• For a given trial function, its real part is also a trial 

function (but it may have different symmetries), for 
example momentum

• For the ground state, without magnetic fields, spin-orbit 
interaction we can always work with real functions.

• However, in some cases it may be better to work with 
complex functions.

( ) ( ),    or   cos( ),sin( )   ikr ikre e kr kr−
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Fixed-Phase method
Ortiz, Martin, DMC 1993

• Generalize the FN method to complex trial functions:
• Since the Hamiltonian is Hermitian, the variational energy is 

real:

• We see only one place where the energy depends on the 
phase of the wavefunction.

• If we fix the phase, then we add this term to the potential 
energy. In a magnetic field we get also the vector potential. 

• We can now do VMC or DMC and get upper bounds as before.
• The imaginary part of the local energy will not be zero unless 

the right phase is used.
• Used for twisted boundary conditions, magnetic fields, 

vortices, phonons, spin states, … 

[ ] [ ]22 ( ) 2

2 ( )

2 ( ) ( ) ( )
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Problem with core electrons
• Bad scaling in both VMC and DMC

• In VMC, energy fluctuations from core dominate the 
calculation

• In DMC, time step will be controlled by core dynamics
• Solution is to eliminate core states by a pseudopotential

• Conventional solution: semi-local form

• Ensures that valence electrons go into well defined 
valence states with the wavefunction and energy for 
each angular momentum state prescribed.

• PP is non-local: OK for VMC. Leads to an extra MC 
integral.  But DMC uses a locality approximation and 
good trial functions. Extra approximation.

ˆ ' ( ) ( ') ( ) (cos( '))e core local l l
l

r v r v r r r v r P r rδ− = − + ⋅∑
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Summary of  T=0 methods:

Variational(VMC), Fixed-node(FN), Released-node(RN)
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Problems with projector methods
• Fixed-node is a super-variational method
• DMC dynamics is determined by Hamiltonian
• Zero-variance principle allows very accurate calculation of 

ground state energy if trial function is good.
• Projector methods need a trial wavefunction for accuracy. 

They are essentially methods that perturb from the trial 
function to the exact function. (Note: if you don’t use a trial 
function, you are perturbing from the ideal gas)

• Difficulty calculating properties other than energy. We must 
use “extrapolated estimators” or “forward walking”.

• Bad for phase transitions and finite temperature, complex 
systems.  

• Path Integral MC solves some of these problems.

2
0 0( , ) ( ) ( )  not ( )Tf R R R Rφ ψ φ∞ =


