

Diffusion Monte Carlo		
 How do we analyze this operator? Expand into exact eigenstates of H. 	$\mathbf{y}(R,t) = e^{-(H-E_T)t} \mathbf{y}(R,0)$ $\mathbf{H}\mathbf{f}_a = E_a \mathbf{f}_a$ $\mathbf{y}(R,0) = \sum \mathbf{f}_a(R) \langle \mathbf{f}_a \mathbf{y}(0) \rangle$	
 Then the evolution is simple in this basis. 	$\mathbf{y}(R,t) = \sum_{a} \mathbf{f}_{a}(R) e^{-t(E_{a}-E_{T})} \left\langle \mathbf{f}_{a} \mathbf{y}(0) \right\rangle$	
 Long time limit is lowest energy state that overlaps with the initial state, usually the ground state. How to carry out on the computer? 	$\lim_{t \to \infty} \mathbf{y}(\mathbf{R}, t) = \mathbf{f}_0(\mathbf{R}) e^{-t(E_0 - E_T)} \left\langle \mathbf{f}_0 \mathbf{y}(0) \right\rangle$ $E_0 \approx E_T \Rightarrow normalization fixed$	
Ceperley Projector Monte Carlo		

Code to sample normal distribution

Normal distribution $\langle x \rangle = x_0$ and $\langle (x - x_0)^2 \rangle = \sigma^2$

```
x=sprng()-0.5
y=sprng()-0.5
r2=x*x+y*y
if (r2>0.25) go to 1
radius= sigma*sqrt (-2*ln(sprng())/r2)
xnormal=x0+x*radius
ynormal=y0+y*radius
```

•No trig functions, 1 log, 1 sqrt, 1 divide

•Mixes up regularity of random numbers

•Efficiency of angle generation is $4/\pi$.

•Gets 2 ndrn's each time.

Ceperley Projector Monte Carlo

1

Brownian Dynamics Consider a big molecule in a solvent. In the high viscosity limit the "master equation" (Smoluchowski or Fokker-Planck eq.) is: $\frac{\partial \mathbf{r}(R,t)}{\partial t} = D\nabla^{2}\mathbf{r}(R,t) - \mathbf{b}D\nabla[F(R)\mathbf{r}(R,t)]$ $R(t+\mathbf{t}) = R(t) + \mathbf{t}\mathbf{b}DF(R(t)) + \mathbf{h}(t)$ $\langle \mathbf{h}(t) \rangle = 0 \quad \langle \mathbf{h}(t)^{2} \rangle = 2\mathbf{t}D$ $G(R \to R') = c \exp\left(-\frac{(R'-R-\mathbf{b}D\mathbf{t}F(R))^{2}}{2D\mathbf{t}}\right)$ Diffusion Quantum Monte Carlo without branching is the same

as Brownian Dynamics. Use same techniques.

- To the pure diffusion algorithm we have added a drift step that pushes the random walk in directions of increasing trial function: $R' = R + 2I t \nabla \ln y_T(R)$
- Branching is now controlled by the local energy

$$E_L(R) - E_T = \mathbf{y}^{-1}(R)\widehat{H}\mathbf{y}(R) - E_T$$

- Because of zero variance principle, fluctuations are controlled.
- Cusp condition can limit infinities coming from singular potentials.
- We still determine E_T by keeping asymptotic population stable.

$$E_{0} = \lim_{t \to \infty} \frac{\int dR \boldsymbol{f}(\boldsymbol{R}, t) H \boldsymbol{y}_{T}(\boldsymbol{R})}{\int dR \boldsymbol{f}(\boldsymbol{R}, t)} \approx \left\langle E_{\boldsymbol{y}}(\boldsymbol{R}) \right\rangle_{f(\infty)}$$

• Must have accurate "time" evolution. Adding accept/reject step is a major improvement.

• Importanced sampled Green's function:

$$G(R \to R') = \frac{\mathbf{y}(R')}{\mathbf{y}(R)} \langle R | e^{-tH} | R' \rangle$$

• Exact property of DMC Green's function

$$\left|\Psi(R)\right|^{2}G(R \to R') = \left|\Psi(R')\right|^{2}G(R' \to R)$$

• We enforce detailed balance to decrease time step errors.

$$A(s \to s') = \min\left[1, \frac{G(s' \to s)|\mathbf{y}(s')|^2}{G(s \to s')|\mathbf{y}(s)|^2}\right]$$

- VMC satisfies detailed balance.
- Typically we choose time step to have 99% acceptance ratio.
- Method gives exact result if either time step is zero or trial function is exact.

Mixed estimators	
 Problem is that PMC samples the wrong distribution. 	$\langle A \rangle_{M} \equiv \frac{\int dR \mathbf{y}^{*}(R) A \mathbf{f}(R)}{\int dR \mathbf{y}^{*}(R) \mathbf{f}(R)}$
 OK for the energy Linear extrapolation helps correct this systematic error 	$\left\langle A \right\rangle_{o} \equiv \frac{\int dR f^{*}(R) A f(R)}{\int dR f^{*}(R) f(R)}$ $\left\langle A \right\rangle_{V} \equiv \frac{\int dR y^{*}(R) A y(R)}{\int dR y^{*}(R) y(R)}$
 Other solutions: Maximum overlap Forward walking Reptation/path integrals 	$\langle A \rangle_{0} \approx 2\langle A \rangle_{M} - \langle A \rangle_{V} + O((\mathbf{f} - \mathbf{y}))$ $\langle A \rangle_{0} \approx \frac{\langle A \rangle_{M}^{2}}{\langle A \rangle_{V}} + O((\mathbf{f} - \mathbf{y})^{2}) \text{ for the density}$ $\langle A \rangle_{M} = \langle A \rangle_{V} \Rightarrow \int dR (\mathbf{f} - \mathbf{y})^{2} \text{ minimized wrt } A$
Ceperley Projector Monte Carlo	

Fixed-node method	
• Initial distribution is a pdf. It comes from a VMC simulation. $f(R,0) = \mathbf{y}_T(R) ^2$	
 Drift term pushes walks away from the nodes. Impose the condition: <i>f</i>(<i>R</i>) = 0 when <i>y</i>_T(<i>R</i>)=0. This is the fixed-node BC 	
• Will give an upper bound to the exact energy, the best upper bound consistent with the FNBC. $E_{FN} \ge E_{0}$ $E_{FN} = E_{0} \text{ if } \mathbf{f}_{0}(R)\mathbf{y}(R) \ge 0 \text{ all } R$	
 •f(R,t) has a discontinuous gradient at the nodal location. •Accurate method because Bose correlations are done exactly. •Scales well, like the VMC method, as N³. Classical complexity. •Can be generalized from the continuum to lattice finite temperature, magnetic fields, 	
•One needs trial functions with accurate nodes.	

Proof of fixed-node theorem

• Suppose we solve S.E. in a subvolume V determined by the nodes of an antisymetric trial function.

 $\hat{H} \boldsymbol{f}_{FN} = E_{FN} \boldsymbol{f}_{FN}$ inside V

Extend the solution to all space with the permutation operator.

$$\hat{\boldsymbol{f}}_{FN}(R) \equiv \frac{1}{N!} \sum_{P} \left(-1\right)^{P} \boldsymbol{f}_{FN}\left(PR\right)$$

Inside a given sub-volume only permutations of a given sign (\pm) contribute. Hence the extend solution is non-zero.

Evaluate the variational energy the extended trial function.

$$E_{0} \leq \frac{\sum_{PP'} (-1)^{P+P'} \int dR \mathbf{f}_{FN}^{*} (PR) \hat{H} \mathbf{f}_{FN} (P'R)}{\sum_{PP'} (-1)^{P+P'} \int dR \mathbf{f}_{FN}^{*} (PR) \mathbf{f}_{FN} (P'R)} = E_{FN} \leq E_{VMC}$$

Edges of volumes do not contribute to the integral

since the extend solution vanishes there.

