Motivation for Path Integral MC

 There are difficulties with VMC and DMC

— Need to find good trial functions; this becomes
increasing difficult as systems get more complex,
especially if one doesn’'t know the correct physics.

— Mixed estimator problem for properties other than
the energy.

e Temperature is important: e.g. finite temperature
phase transitions.

e PIMC makes nice connection with DMC and with other
theoretical approaches and leads to concepts such as
Reptation MC, understanding of bose condensation,
superfluidity, exchange ...

* Details given in : RMP 67, 279 (1995)
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Imaginary Time Path Integrals
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PIMC Simulations

e We do Classical Monte Carlo simulations to evaluate
averages such as:

<V >:%@|Rv R)e ™
b =1/(k;T)

e Quantum mechanically for T>0, we need both to

generate the distribution and do the average:
1
<V >= =RV (R)r b
~FRV(R)r (RDb)
r (R;b) =diagonal density matrix

< Simulation is possible since the density matrix is
positive.
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Notation

Individual coordinate of a particle r;
All 3N coordinates R= (1,5, .... Iy)

Total potential energy V(R)

N? wherel © L

2m

Qo=

Kinetic energy -

Iy

~

Hamiltonian |_’|\ =T +\7
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The thermal density matrix
Hf a = %f a
Find exact many-body
eigenstates of H. r(Rib)=4 . (R e b=wkr
Probability of a

occupying state a is ~ -bH .
exp(f’bij r, =€ operator notation

All equilibrium off-diagonal density matrix:
properties can be r(R,R:b) = éfa*(R')fa(R)e'bEa

calculated in terms of
thermal o-d density

matrix r (R,R';b)3 0 (without statistics)
retates high - T (R/Rib,+b;) =
temperature. e = fR'1 (R,R';b)r (R\R;;b,)
or with operators; e**?" = g g2t
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Trotter’s theorem (1959)

= We can use the effects of operators F=g b (T+V)
separately as long as we take small
. . oM
enough time steps. ~ A tT -tV
F=limyey & e H
e nis number of time slices. t =b/M

t is the “time-step”

We now have to evaluate the density matrix for potential and
kinetic matrices by themselves:

| =312 _-(r-r') /41t
Do by FT's <r‘etT r>=(4p|t) e (1)
Vis “di I” v oL\ - N\ AtV
is “diagona <r‘etv " >—d(r- r)e (r)

Error at finite n is roughly: 2

1% ~5s
comes from communtator -—&T.VH

e
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Using this for the density matrix.

< We sample the distribution:

Y
-a SRy Rjqit)

g
- a_ S(R!Riﬁ[;t )

e /Z where Z=(¥R,..dR,e ™
Where the “primitive” link action is:
(Ro' R1)2 t
SR, Rit) =- —|n(4p| t)+ T+E[V(RO)+V(R1)]

- Similar to a classical integrand where each particle turns

into a “polymer.”

— K.E. is spring term holding polymer together.

— P.E. is inter-polymer potential.

e Trace implies R,=R,,,; = closed or ring polymers
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“Distinquishable”

particles

10
Each atom is a ring

polymer; an exact
representation of a
quantum wavepacket 5
in imaginary time.

]

Trace picture of 2D
helium. The dots
represent the “start’
of the path. (but all
points are equivalent)
The lower the real
temperature, the
longer the “string”
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Different schemes to picture Pls.
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Fourier smoothed trace
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Main Numerical Issues of PIMC

< How to choose the action. We don’t have to use the
primitive form. Higher order forms cut down on the
number of slices by a factor of 10. We can solve the
2-body problem exactly.

e How to sample the paths and the permutations.
Single slice moves are too slow. We move several
slices at once. Permutation moves are made by
exchanging 2 or more endpoints.

< How to calculate properties. There are often several
ways of calculating properties such as the energy.

If you use the simplest algorithm, your code will run
100s or 1000s of times slower than necessary.

Calculations of 3000 He atoms can be done on a

workstation-- if you are patient.
Details see: RMP 67, 279 1995.
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Calculating properties
* Procedure is simple: write down observable:
R (RIO|R)(Rle *|R)

Z
e Expand density matrix into a “path”:

<O>= <<R‘o{ R'>>pahwaage

<O>= <<6(&)>> for "diagonal operators

path average
= Density, density-density, .... the potential
energy are diagonal operators. Just take
average values as you would classically.
< All time slices are the same — can use all for
averages.

<O>=
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Calculation of Energy

< Thermodynamic estimator: differentiate partition function

dz 1. .édsu_/ds
=__=_‘Res,_,=<_>
c}j gde dt path

d o 2 4 t?
Potential n*NI-KE  spring energy

6s_au N (R-R)

Problem: variance diverges as small time step.
- Virial Estimator: differentiate in “internal coordinates”
does not diverge at small time steps (Herman, Berne)

~

du 3N 1
o= —F—+—(R - XN\
Evmal <dt 2b 2t (R (:V |U'\k
i 1

Potential NI-KE deviation from centroid .force
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Derivation of Virial Estimator

Write Z as integral over 1y
internal scale -free ——a r,
coordinates. M

As temperature is - _F-C

changed the path is Zj :'T 1£jEM-1

expanded or

contracted =/ finL :i
L 4] t m o
a(z -U(r; ))
z=L™ Gicdz e’
E=-NE) 3N, siedz, KU 7 - o
b
DANGER with PBC E, . = d_U+ﬁ+_(R c) N
and exchanges el d 2b 2 v
1 4

Potential NI-KE deviation from centroid .force
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= Can also calculate kinetic energy by differentiating with respect
to the mass _ mdz

" bzdm

< Or use the “direct” form: K = <eS(_ | Nz)e— S>
path

= For pressure, differentiate wrt the volume (virial estimator).

<

P——eZT— =& (rNu(r )>E

|<J

= In general, one can have different “estimators” having different
convergence of systematic (Trotter) or statistical errors.

= Statistical errors require careful estimation.
= Other errors can be bias and finite-size errors.

* Free energy calculated just as in classical simulation, with all
the same problems.
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Comparison
DMC  wvs.

= DMC uses e-tH as projection

= Branching random walks
State is 3N*population.

= Open boundary conditions
in time. Single state
method.

e Uses importance sampling;
mixed estimator problem.

= Iteration corresponds to
imaginary time. Dynamics
determined and quickly
convergent

e Zero variance principle

Ceperley Intro to Path Integral MC

PIMC

Samples the density matrix
State is 3N*#of time steps
Cyclic BC in time. Finite
temperature properties.

No importance sampling
and hence no mixed
estimator problem. More
“physical.”

Can have slow convergence
(ergodic problems)

Longer time step because of
improved actions (bosons)
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Dictionary of the Quantum-Classical
Isomorphism

Properties of a quantum system are mapped into
properties of the fictitious classical polymer system

Attention: some words have opposite meanings.

Classical

Quantum
-

Bose condensation

Delgcalization of ends

Bason statistics

loining of polvmers
7 Lo P4

Exchange frequency
) <1 Y

Eree enerav to link nolvmers.
gy =y

Erece energyv
97

Eroe energy
I7

lmaginarn/ velocity
= P4 T

Bond vector

Kinetic energy
g

Negative spring energy
=) L 7 JTT

Momentum distribution

ET of end-end distribution

Particle

Ring pnolvmer
gy

Potential energy
g7

S |parfll Hd -state

lso-time pnfnnfinl

Macroscopic palvmer
Lo L P4
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Examples of distinguishable particle
calculations

e Solid H,: work of Marcus Wagner, DMC

= Wigner crystal: 3D Matt Jones, DMC
2D Ladir Candido, P. Phillips, DMC

= Vortex lattice: Nandini Trivedi, P. Sen and DMC
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Example: Solid H,

Solid molecular hydrogen is a very quantum solid

o
o
0
=

KE=69K T, = 13.8K

(r?)" =0.21r,, o

Below T, interface between
solid and gas.

Top layer is at a lower density,
more delocalized and
interesting quantum effects

Normally freezing at surface is
depressed by 10%.

In H, it is depressed by 100%.

o -

0g0
0o0
000
020

n b _J
do
Lt
3

22
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Layer Structure of Solid H,

9 T T T T T T T T
Simulation is of 5 | ]
layers 1
W07 E
Each layer is 30 H, el 5 1

Hard wall on left

derat iy [0AAREN]

Top layer melts =15k

around 7K.

MEwd Lokl A
# LAMER Tw Lk

Very fluffy top layer.

New layer above 6K Lkt / B e
Wagner, DMC, JPTP o o

102,275 (1996). Z (A) T=6K
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Snapshots of H, density

Gas
quuid%ero
Vacancy |
crystal ' g ©
ig%ﬁgﬂ
2 ¥ @,
QXK
SRt i
Plas @l ¢
e e e Yo%
diu‘nﬂ ﬂgos:g J
Layer 2 ﬂ,'ﬂ"ﬂa ﬁ;ﬁ @
e 0,0, @ 0%e
@ @& 9
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Melting of the 3D Wigner Crystal

- PIMC with Boltzmann Jones & DMC PRL 1996
statistics f R
- Phase boundary : | R
determined with free b L 1
energy calculation Kl : E
e Sudden change from X y |
pressure melting to 7 D S £ siuperflwd
. b= - )
thermal melting. o 4
- Lindemann law is 2 e ahis
inaccurate 1 CRYETAL .
e Melting is first order with ”,r-’:
no volume Change o g u ;‘,-‘:'{A CLAZSICAL PLASMA i
PP I I i
0 2=10-2 d=10-% G=10-2 B 10
kyT |Ry]
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Improved Actions
e There exists an “exact link action” :
G\ — H
S(Ri\Ript) =- In(<Ri ‘e Ri+1>)
Y 4
-a SR Rjait) . -a S(R.Rigit)
e IZ where Z=yR;..dR,e ™=

e The “primitive” link action is:

S(Ry,R;;t) = ——In(4p|t) (04%) [V(R)+V(Rl)]

< We often define the exact * mter—actlon as:

U(R,R.st)=S(R, Ryt ) - S(R.R.it)

potential term = total - Kkinetic term (topological)
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Improved Action

«If we make better actions, we can drastically cut
down on the number of time slices.

This saves lots of time, because the number of
variables to integrate over is reduced

<but also because the correlation time of the walk is
reduced since “polymers” are less entangled

~Possible approaches to better actions:
—Harmonic approximation
—Semi-classical approximation (WKB)
—Cumulant approximation
—Pair-product approximation

eImproved actions are also used in lattice gauge
theory: the “perfect action.”

Ceperley Intro to Path Integral MC
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He-He action

Examples for 2 particles ———

= Exact action X
e Cumulant action Z 4

- Primitive action —™—— /"
—WKB  —— .
Exact action is nd
smoother than the

primitive form

Hydrogen atom
WKB does not g -
converge == 4
~Exact action \> ; ,»
«Cumulant action " > f
<Primitive action \*\‘

T

<WKB W

a i (8] (2 ] Bt

=i
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Properties of the action

Positivity (U is real)

Hermitian property U(R,R;b)=U(R,R;b)

Cusp condition (i.e. behavior when two
particles get close together)

Semiclassical behavior: expansion as mass
goes to infinity.

Defining property. Residual energy
should be small:

Feynman-Kac Formula can be used for
insight. Average over all “free particle”
bridges from Ry to Ri.. Proof that density

trix i itive. S ] ¢ t\
matrix is positive % g URRIL) = expe OjtVGQ(t))l]
i

1]
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c/

(R R;t)»0

Generalized Feynman-Kacs

= We can generalize the FK formula to find the correction to any
density matrix just like with the trial function.

= Usual formula is the correction to the free particle density
matrix.

U = 1 (R,,R.it ) expe (HE, (RO)
€ o

c/

r:RW

dR R- -

—=h(t)- R B aru (R;R.;t)

dt t

= The density matrix is average over paths from R, to Rg.

= Gives intuition about how to how to improve it a given action
e Can be used to compute the action. FKPIMC code

Ceperley Intro to Path Integral MC 37
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Cumulant Approximation

In FK formula take the

average into the é t u
exponent g V(RRL) ~expeé- | - (‘):itV (R(t)) u
- Itis possible to 8 \ o aw
evaluate the average
using fourier oy ‘\ p <
transforms. UC(R(),F%I)—OjtngR)"'t(RF - Ro)’StH
R 0

Very accurate for
2
Coulomb problems L B 21 tft - t)

k-2
= However the CA doesV (r,s ) =gke v s =
not exist for non-

t
integrable potentials. qi a

Ceperley Intro to Path Integral MC

Harmonic Approximation
We can exactly calculate the action for a harmonic oscillator. It
is just a shifted Gaussian.

In the neighborhood of (R,R’) let’'s approximate the potential by
a harmonic one.

Reasonable if the potential is really harmonic within a thermal
wavelength. (for example in the high temperature limit)

Uy (Ry.Reit) =t V(R) +L-RAV (R)-LH RV (R
-%(R: - R)NNV(R)(R - R,)
forLd ro=rP+r®+r2®+r ¥+

= R”is an arbitrary place to evaluate the potential. If we choose
it to be one of the end-points we get the Wigner-Kirkwood
approximation.

Bad idea for realistic potentials because expansion does not
converge uniformly. Problem is at small r. Look at derivatives.

Ceperley Intro to Path Integral MC 39
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Cluster action

« For spherically symmetric pair potentials.

= Find the action for a reduced subset of particles exactly and
put together to get a many-body action.

. 6L o
U0 = expe: tA V(1 ()

e o i< 0/ rw
etake the 4t )
uncorrelated ~ €. p
average: \ - O expe ritv(r (t))lil
*This is now ! €o Y
a 2 particle gt u
problem. » O expe aptv(r; (1)) g

i<j € o 0/ rw

e Generalization of T=0 of the Jastrow wavefunction to finite
temperatures.

= At finite T, it is the off-diagonal terms that are important.
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Exact pair action from “SQUARER”

How to determine the exact density matrix for a pair of atoms.

. Use relative coordinates.

. Go into spherical coordinates. Angles become trivial
. Result is a 1-d problem for each angular momentum
. Solve 1-d problem by matrix squaring. Iterate:

L) = G (T ()

5. Complete density matrix is-
- ﬁl. — o L
r(rrit) =4, (rrit)R (cos@)
[/

6. Fit to a form easy-to—corhpute during the PIMC run.

A WN P
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PIMC representation
of pair density matrix

* In bare form it is 3d+time. L s
= But as normally used q _Eér |+|r |H
— Time is discrete (fixed)

_ s=|r-r]f
— 2 other variables are oo
small (expand in them) Z:|I'|- |r
1 o ok i
u(r,r)= E[uo(r) + U, (r ')] +ta Uy (@)z*'s*D
j<k

= ks the “order”. Typically

l|ysmall and symmetric
b

we use k=1 or k=2.

= This will take only 2-3 times
longer to compute action r
than the pair potential (bare
Trotter formula).

e But with fewer time slices.

Ceperley Intro to Path Integral MC
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Compare pair action
for 3 He atoms

1 E =TT ¥

Compute exact action for C

each pair using FKPIMC I

0.1 =

Error in I

action E o Ol-::

3A :

- 0.001 =

How good is it for the E
triangle? [ :

Pair action Wlll haye 1/6 the e PO oTeT] .1. R IE e
number of time slices. A . i o
o™ 102 v ™% 1o~

Needed time steps
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Convergence on an (H,),, cluster

Potential energy

" Paue

l.;;‘:'M-I ‘_'___1
-2 |- q‘. J
o )

s b
el T
i ~Fpy
- Primibio®
=~ ‘
b b
o o e am oo

TN

L e e e I B LA
-48 / -
> 5

Kinetic energy

Potential converges much faster than the kinetic energy
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Speed of calculation for
22 H, molecules

Efficiency (CPU time for a given error) versus time

step.
G POTEUTIAL ENERGY
(R
Elih‘-‘:""""
2.
5 N r_._,-f . F:‘Fl
b
] i
(A b oo
T K
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Special Potentials

Coulomb Hard Sphere
= Coulomb: eigenfunctions = Expansion in partial waves
are hydrogen atom simple: spherical bessel
wavefunctions and functions+phase shifts
hypergeometric function - Various analytic approximations

« lots of analytic formulas,
asymptotic formulas. . .

- can use supersymmetry to  Harmonic Oscillator
get rid of one variable:
simplifies making tables.

* Gets rid of the infinity in the
attractive Coulomb
singularity.

« Describes hydrogen atom
exactly.

= First rotate to diagonal
representation to get a product
of 1D density matrices

= Can do analytically
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Path Integral Sampling M ethods

< We need to perform integrals over the distribution:

y
-a S(RiRis1t)

e l1Z
« Where the exact link action is kinetic and potential
energy: R R
SRy, R1) =- 37Nln(4pl t )+%+ URs, R)

= Similar to a classical collection of ring “polymers”.

e 3NM degrees of freedom. 64 He atoms*40 slices=2560
classical particles

« Available classical methods are Monte Carlo or Molecular
Dynamics. (in fact many different MC methods)
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Multi-level sampling

We need to sample several links at once. Why?

e Polymers move slowly as number of links increase.

= Maximum moving distance is order: «/ﬁ

« Calculate how much CPU time it takes the centroid of a
single particle’s path to move a given distance

« Scales as M® . Hence doubling the number of time slices
will slow down code by a factor of 8! Eventually you get
into trouble.

« (also shows why good actions help)

 Permutations/windings will not get accepted easily
because pair permutations need to have the path move
as well.
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PIMC Sampling considerations

= Metropolis Monte Carlo that moves a
single variable is too slow and will not
generate permutations.

< We need to move many time slices

together
= Key concept of sampling is how to
sample a “bridge”: construct a path >

starting at R, and ending at R,.

= How do we sample R;/»? GUIDING
RULE. Probability is:

<R0|e tH/2| R/2>< R/2|e- tH/2| R>
P(R/Z): _tH
(Rle"[R)

e Do an entire path by recursion from
this formula.

e Related method: fourier path

Ceperlglm(lllglg Integral MC 53
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How to sample a single slice.

pdf of the midpoint of the
bridge:(a pdf because it is
positive, and integrates to 1)
For free particles this is easy-
a Gaussian distribution

PROVE: product of 2 Gaussians

is a Gaussian.

Interaction reduces P(R) in
regions where spectator
atoms are.

Better is correlated sampling:
we add a bias given by
derivatives of the potential
(for justification see RMP pg
326)

Sampling potential U, is a
smoothed version of the pair
action.

Ceperley Intro to Path Integral MC

P(R,,)=

<R)|e-tH/2|Rt/2><R/2|e-tH/2|R>

(RleIR)

R =~(R+R)+h
s?=It/2=(h?

Rz =>(R+R)+ tRU,(R],) +h

=2
S

=1t/2 +( 9RRU (RS,) = (i)
U, (R) = sampling potential

54

Lévy construction

e« How to generate a random
walk by starting in the
middle.

e So you don’t fall into Zeno’s

paradox.

e Construct a whole path by
recursively sampling
bridges

— Midpoint
— Midpoint of midpoints
— Etc.

— Stop when you are at
the desired level of
precision.

Ceperley Intro to Path Integral MC

R, =~(R,+R) +h
sf=1t/2=(")

R, gt |Rt,2><R(/2 |e-tH/2| R>

(Rle"IR)

58
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Bisection method

. . RA
1. Select time slices ]

2. Select permutation

from possible pairs, d
triplets, from:

r (R,PR;4)

3. Sample midpoints <

4. Bisect again, until
lowest level N

5. Accept or reject entire
move

Ceperley Intro to Path Integral MC
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Multilevel Metropolis/ Bisection

eI ntroduce an approximate
level action and sampling.

«Satisfy detailed balance at
each level with rejections
(PROVE)

£ € T (sS® 9p,(s)p,..(s)U
Al® S =mind o P (3p(5)

*Only accept if moveis
accepted at dl levels.

*Allows one not to waste time
on moves that fail from the
start (first bisection).

Ceperley Intro to Path Integral MC

Sample some variables

@1ue?>

Qnmpln hore variables

@wue’;

L

Finally accept entire move.

60
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