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Navier-Stokes equations for gasdynamics

Diffusive terms  0 ⇒ Euler equations
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Classes of gasdynamics solvers
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(x,y)

Smoothed particle hydrodynamics 
(SPH)

Uses particles as moving 
interpolation centers

Eulerian grid-based hydrodynamics

Fluid quantities defined on a mesh

Finite difference (staggered mesh) or 
finite volume representation
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Classification of partial differential equations

Consider the most general linear, second-order PDE with constant coefficients:

Such equations are classified in analogy with conic sections:

⇒ elliptic equation (two complex characteristic speeds)

⇒ parabolic equation (one real characteristic speed)

⇒ hyperbolic equation (two real characteristic speeds)

The methods used to solve each class are quite different.

Elliptic equations
Example: Poisson equation

Parabolic equations
Example: Diffusion equation

Hyperbolic equations
Example: Wave equation
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Initial and boundary conditions

Initial-value problems
Parabolic
Hyperbolic

Boundary-value problems
Elliptic
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Discretization of PDEs

Finite-difference methods

Work with values of the solution at a number
of specified points:

Finite-volume methods

Work with cell averages of the solution:
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We can write a general conservation law in the form

For example, for the Euler equations we have

We can integrate any one of these equations over a cell volume to obtain

where q
ijk

 is a finite-volume quantity.  The function F
i+1/2,jk

 is the average of F(q) 

over the face between cells ijk and i+1,jk:

Finite volume methods – conservation form
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Properties of numerical methods

Consistency

Define the local truncation error of a method by substituting a Taylor expansion for 
each of the terms in a difference equation.  If the lowest-order error terms are of 
order O(xp + tp), the difference operator is said to be locally pth-order.

If the local truncation error goes to zero as x, t  0, the method is consistent.

Stability

A method is stable if, as x and t are reduced, the method produces a result that 
tends toward some finite limit.

Convergence

If the global error of a solution (defined in some fashion) goes to zero as fast as xp 
+ tp, the method is pth-order convergent.

Lax Equivalence Theorem:  if and only if a method is consistent and stable, it is 
convergent.
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Explicit vs. implicit methods

How to handle time integration?  Two first-order methods:

Explicit (FTCS) – solve directly

Implicit (BTCS) – solve by matrix inversion

For numerical stability, explicit methods require CFL criterion: 

where  ~ 1.  Implicit methods are unconditionally stable.
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“Classical” methods

Simplest differencing schemes do poorly at flow discontinuities.  Consider scalar 
advection equation

Upwind (O(t)):

Lax-Wendroff (O(t2)):

Odd-order methods  diffusive errors
Even-order methods  dispersive errors
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Strategy:

Treat the solution as piecewise polynomial:

Solve the time evolution over [t
n
, t

n+1
] for this piecewise function exactly.

The exact solution can then be used to produce fluxes.

Varieties:

Piecewise constant (Godunov's method, Godunov 1950)
Piecewise linear (e.g., MUSCL, van Leer 1979)
Piecewise parabolic (e.g., PPM, Colella & Woodward 1984)
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Godunov methods
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Initial conditions:  arbitrary discontinuity

Admissible solutions:  self-similar; three nonlinear waves
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Two states on either side of a nonlinear wave are connected by the Hugoniot 
adiabat (for shocks) or the integral curve of the appropriate characteristic (for 
rarefactions)
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Generalization to higher order in x and t


L
, u

L
, P

L
, 

L
, u

L
, P

L


R
, u

R
, P

R
, 

R
, u

R
, P

R


L
, u

L
, P

L


R
, u

R
, P

R

~ ~ ~

~ ~ ~

Linearized 
characteristic
decomposition

Interpolation

Reconstruction
of effective states

Riemann solver


1

u–a
characteristic


2

u
characteristic


3

u+a
characteristic


1

u–a
characteristic

~


2

u
characteristic

~


3

u+a
characteristic

~
S

lo
pe

 li
m

iti
ng

Fluxes

MUSCL approach (van Leer 1980s)

MUSCL = Monotonic Upstream-centered Scheme for 
Conservation Laws

Achieves second-order time accuracy by estimating input states 
to Riemann problems at time t

n+1/2



16th Chris Engelbrecht Summer School, January 2005 2: 15

The need to limit slopes

As long as                                                       for our polynomials, slopes can be 

whatever we need

Notice that at discontinuities, divided differences give meaningless slopes:

Unless we “flatten” the interpolating polynomial at discontinuities, we will introduce 
oscillations at these locations.

We only want to do this when we have to...
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Piecewise parabolic method (PPM)

Colella & Woodward (1984)

Piecewise parabolic interpolants
MUSCL approach to time integration
Slope limiting and (weak) artificial 
viscosity at strong shocks
Contact steepening

Example:  interaction of two strong blast 
waves (Woodward & Colella 1984) 
computed using FLASH (Fryxell et al. 2000)
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Operator splitting (fractional-step method)

Suppose we have a difference operator D with truncation error O(t) or better that 
can be written

D = D
1
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2
 + D

3

Then

D[q] = D
1
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2
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3
[q]]] + O(t)

If D is O(t2), we can do better by symmetrizing (Strang splitting):
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Apply each operator for ½ t.  Operators can be

Different directions:

Different physics:
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Boundary conditions for CFD – practicalities

Typically we establish ghost cells around the boundary of our domain and set their 
values at the beginning of each timestep, independent of the integration scheme.
Common types of boundary condition include:

Periodic boundaries

Here we require that all components of the solution (, P, u, etc.) be periodic 
functions of the computational box.  So we set
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We include one ghost cell on each side for each point in our stencil on that side.
For example:  upwind and Lax-Wendroff require one ghost cell on each side 
(three-point stencil).
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Boundary conditions – 2
Outflow boundaries

Here we wish to allow material to flow out of the grid, but not to flow onto the 
grid.  For supersonic flows we can set all gradients to zero on the boundary:
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For subsonic flows this is usually not sufficient:  waves can be reflected from 
the boundary.  Characteristic-tracing methods are sometimes used in this case.

Reflecting boundaries

These are used for solid surfaces and symmetry axes.  The Euler equations 
preserve reflection symmetry, so reflect density, pressure, and parallel velocity 
as even functions and velocity normal to the surfaces as an odd function.
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The need for mesh refinement

Ideally we would cover the Universe with a uniform mesh:

● Numerical diffusivity/resistivity constant
● Properties mathematically simple
● Easy to parallelize (domain decomposition)

But this would be a colossal waste of resources!

For explicit hydro schemes in 3D,

Storage ∝ N3

Cost ∝ N4

If we wanted to resolve interstellar distances in
a cosmological volume, we would need

We would need 1028 bytes per variable... a computer requiring 1 ns to update each 
zone would take 3×1029 yr for one timestep!  And most of it would be voids...

L~1 Gpc
~1 pc }⇒N~109
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Adaptive mesh types

Types of mesh refinement

● r refinement – move or stretch the mesh points

Nonuniform meshes
Lagrangian meshes
Arbitrary Lagrangian-Eulerian (ALE)

● p refinement – adjust the order of the method

Discontinuous Galerkin
Spectral elements

● h refinement – change the mesh spacing

Nested grids
Adaptive mesh refinement (AMR)
Finite elements
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Block-structured adaptive mesh refinement

Berger & Oliger (1984)
Berger & Colella (1989)

Hierarchy of structured 
meshes (patches)

Individual patches:

Different sizes

Different numbers of zones

Arbitrary integer resolution 
increment from one level to 
next

Patches can overlap

Norman & Bryan (1998)
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Oct-tree AMR

Each block contains nd 
zones in d dimensions

Blocks stored in 2d-tree data 
structure
Factor of 2 refinement per 
level
Blocks assigned indices via 
space-filling curve
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Parallel decomposition

When implementing AMR on a parallel computer, commonly one uses a space-
filling curve to assign a 1D ordering to the 2D/3D blocks on different levels of 
refinement

Once blocks are ordered, the list can
be divided up evenly among processors:

Blocks can also be weighted by the
work needed to update them

Space-filling curves tend to preserve
locality – nearby blocks tend to have
adjacent indices

Example:  Morton curve used by
FLASH

(Fryxell et al. 2000)

1
2

3

4 5

6 7

8

9 10

11
12 13

14

15

16 17
18

19

2021
22
23 24

25 26

27

28
29

30

31 32

33 34
35

36 37

1 – 9 10 – 18 19 – 27 28 – 37

Proc 0 Proc 1 Proc 2 Proc 3



16th Chris Engelbrecht Summer School, January 2005 2: 25

Initializing AMR calculations (non-cosmological)

Different from initializing a uniform mesh:
● Multiple blocks or patches of zones
● Don't know block structure in advance

     (depends on solution!)

Initialization is done one block/patch at a time.

1. We start by initializing the coarsest block.
2. Decide where to refine; create new blocks.
3. Redistribute blocks among processors if necessary.
4. Initialize solution on the new blocks (rather
    than interpolating from coarse blocks as during
    the run).
5. Go to 2; if no new blocks required, we are done.

Be careful – desired features may not be resolvable
on the coarsest mesh, so expected refinements might
not occur.

● Use subzone averaging to make coarse zones reflect
  correct zone averages
● Force refinement in regions where initial conditions
  contain fine features

• •
••

Zone-center values on coarse 
mesh do not fall within disk – so 
coarse mesh looks uniform and 
isn't refined

Zone averages catch 
part of disk and lead to 
further refinement
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Basic AMR hydro algorithm – global timestep
1. Update boundary information.

a) Blocks restrict interior information to parent blocks
b) Blocks trade information with neighbors on same refinement level
c) Blocks with external boundaries set those values explicitly
d) Fine blocks at fine-coarse boundaries set boundary values by interpolation 

from parents
2. Apply hydrodynamics operator to each block, treating it as independent.

a) Compute flux for each cell interface on each block
b) Override coarse boundary fluxes at coarse-fine interfaces with fine fluxes
c) Difference fluxes to perform time update

sum these fine-
grid fluxes... ... to get this 

coarse-grid flux
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AMR boundary conditions
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Basic AMR hydro algorithm – global timestep

3. Update mesh refinement.

a) For each block, compute a figure of merit that will determine whether the block 
should be refined or derefined (“refinement marking”)

b) For each block:

i) If it is to be refined, create child blocks and set their solution information by 
interpolating from the parent

ii) If it is to be derefined, restrict solution information to its parent block, then 
free up the memory allocated to the block to be derefined

c) Compute block indices using space-filling curve

d) Redistribute blocks by communication among processors so that all 
processors have about the same amount of work to do during the next step
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Refinement criteria
Geometrical

Refine blocks containing certain points – useful
for doing spherically symmetric problems on
Cartesian grids (refine center and edge of object)

Second derivative of density or temperature

Used to capture shocks.  Compute scaled second
derivative for each zone after Löhner (1987):

Refine block if

  
Derefine block if

Typical values C
1
 = 0.8,

C
2
 = 0.2,  = 0.01

E i≡
∣ui1−2 uiui−1∣

∣ui1−ui∣∣ui−ui−1∣ ∣ui1∣2∣ui∣∣ui−1∣

maxblock E iC1

maxblock E iC2
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Refinement criteria

Magnitude of density

Refine blocks to different levels
depending on the ratio of their maximum
densities to some reference density.

Truncation error estimate

Use Richardson extrapolation of solution
on coarser grids to estimate mesh spacing
required for a given level of error.

Physical criteria

Keep instabilities resolved by computing local
critical wavelengths 

crit
 and asking whether


crit

 < x.  Example:  Truelove et al. (1997)

criterion for Jeans-unstable fluid:

log 

x
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max
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this interval {
2x
3x

4x
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­log x

log 

 x0.25J ,   J≡cs 
G  
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