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Barry Sanders, NCSA

Era of structure formationNucleosynthesis Recombination

Context:  the expanding universe
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The metric

Fundamental assumptions of physical cosmology:
● Isotropy – same in all directions (testable:  microwave background T/T < 105)
● Copernican principle – we do not occupy a privileged location

Together these imply homogeneity:  on large scales properties of Universe are 
independent of location

        Homogeneity without Isotropy without      Homogeneity and
        isotropy    homogeneity     isotropy

The most general space-time metric consistent with homogeneity and isotropy is 
the Robertson-Walker metric:

 

ds2=c2 dt2−a t 2 [ dr2

1−kr 2r2 d 2r2 sin2d2]
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The metric – 2

If we have two events, one at (r,,,t) (spherical coordinates + time) and the other 
at (r+dr,+d,+d,t+dt), the spacetime interval between them is ds.  Also:

a(t)≡ the scale factor, normalized so that today a(t
0
) ≡ a

0
 = 1

k ≡ spatial curvature

t

x

y

R t2=R t1
a t2
a t1

R t1
s=∫1

2
ds=c t2−t1
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Friedmann equations

If we insert the RW metric into the Einstein equations of general relativity,

we get the Friedmann equations:

These equations describe the kinematics of the expansion.  Here

H(t) ≡ the Hubble parameter; H(t
0
) ≡ H

0
 (the Hubble “constant”)

The density  and pressure P include contributions from all sources of mass-energy.

8G=T 

spacetime curvature 
from RW metric

stress-energy of uniform, 
isotropic fluid

H t 2≡ a
a 

2

=
8G

3
−

k
a2

a
a
=−

4G
3 3 P

c2 

.

..
time-time component

space-space components
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Redshift

The wavelength of photons increases with the scale factor.  We have

Thus we commonly define the redshift z via

z = 0 corresponds to the present; z   ∞ as one approaches the Big Bang.

A photon travels along a null geodesic (ds = 0), so we have

The comoving distance between two observers on the same light cone is thus

Closed-form expressions are given for a variety of models by Mattig (1958, 59, 68).

observed=emitted1z=emitted

a0

a

a=
a0

1z
=

1
1z

. . .
observed

emitted

dr=c
dt
a
=c

da
a a

=c
da

a2 H
=−

c
H z

dz.

R=∫0

z c dz
H z
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Relative velocities

The instantaneous relative velocity of two observers moving with the expansion 
and separated by a comoving distance R is

We usually write

Notice that v
rel

 is only the same as the observed relative velocity if the light travel 

time is short relative to the age of the Universe:

If the observers have velocities relative to the spacetime expansion, the total 
relative velocity of the observers is the sum of their relative velocity due to 
expansion and their relative peculiar velocities:

vrelR , t =
d
dt

[a t R ]=H t a t R

H 0≡100 h km s−1  Mpc−1 ,    h  = 0.71 (WMAP)

R

v
rel

 /2–v
rel

 /2

R

v
rel

 /2–v
rel

 /2

v
pec,1

v
1 
= v

pec,1
 – v
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vrel,obs=vrelR , t1=H t1a t1R
                                         ≈H 0 R   if  t0−t1≪t0

v rel,obs=v rel R , t1=H t1a t1 R
≈H 0 R  if t 0−t1≪t 0
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Geometry

The spatial geometry of the Universe falls into one of three categories depending 
on the sign of k:

In reality, of course, the geometries are 3D spaces, not 2D surfaces like these.

We haven't said anything yet about the form of the expansion law (the “fate” of the 
Universe), just the curvature of space.

k > 0
closed space

k = 0
flat space

k < 0
open space
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Expansion rate – limiting expressions

The expansion rate depends on how  and P vary with time.  We can identify 
several limiting cases of interest:

Matter domination:   > 0 and c2 ≫ P
The expansion dilutes the fluid but does not decrease the rest energy per 
particle.  Thus

Radiation domination:  P > 0 and P = c2/3 (radiation or relativistic matter)
The expansion dilutes the fluid and decreases the energy per particle (redshift 
of de Broglie wavelength).  Thus

Curvature domination:  k/a2 ≫ G, curvature dominates density term
If k is constant and < 0 (open), we have

Vacuum domination:   = constant dominates curvature term
In this case

∝a−3⇒a∝t2 /3

∝a−4⇒a∝ t1 /2

a∝t

a∝eHt ,   H  constant
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Expansion rate – limiting expressions – 2

Because of the way the different fluid components' densities change with time, we 
can sketch out the history of the Universe according to the dominant mass-energy 
component:

The epoch of matter-radiation equality is very important because density 
fluctuations can only grow due to gravitational instability after this time.

log a

log 
radiation-dominated era

matter-dominated era

vacuum-dominated era

epoch of matter-radiation equality

1zeq≈2.39×1040 h2
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Curvature and density

Notice that for any given expansion rate H, if the density takes on a critical value 


crit
 = 3H2/8G, the required curvature k = 0.  If the density is greater than this 

critical value, the curvature is positive; if it is less, the curvature is negative.

Thus the dynamical quantity (density) sets the kinematic quantity (curvature).

Define the density parameter as

Note that in general this is a function of time.

If we treat the total energy density of the Universe as approximately the sum of 
matter, radiation, and vacuum terms, the first Friedmann equation becomes

t ≡
t 
critt 

=
8G

3 H t 2
t 

H 2t =
8G

3 [ m,0

a t 3


r,0

a t 4v,0−
3 k

8G a t 2 ]
=H 0

2 [ m,0

a t 3


r,0

a t 4v,0−
k,0

a t 2 ]
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Curvature and density – 2

Note that we can also divide the original equation through by H(t)2 to get

Thus in the special case k = 0 we always have

This case is of most interest, since observations indicate that

We can always cast the Friedmann equation in the very useful form

The spatial curvature is thus set by the density parameter:  models with more than 
critical density are closed; equal to critical, flat; and less than critical, open.

The relationship between comoving distance and redshift is then:

1=m t r t v t −k t ≡t −k t 

t ≡1k=0

m t recombr t recombvt recomb≈1.02   (WMAP)

H 2a=H 0
2 [m,0

a3 
r,0

a4 v,0−
0−1

a2 ]

dr=
c

H 0
[m,01z3r,01z4v,01−01z2 ]

−1 /2

dz
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Evolution of matter-dominated models

In a matter-dominated universe we have 
0
 = 

m,0
 and

Readily integrated (though only 
0
 = 1 gives an explicit expression for a(t)):

For 
0
 = 1 (k = 0):  Einstein-de Sitter model

For 
0
 > 1 (k > 0):

For 
0
 < 1 (k < 0):

da
dt

=[0

a
−0−1]1 /2

H 0

a t = 3 H 0 t

2  2 /3

sin−1[ a
a∗ 

1 /2]−[ a
a∗ 1− a

a∗ ]
1 /2

=
0−13 /2

0

H 0 t   a∗≡
0

0−1

[ a
a∗ 1 a

a∗ ]
1 /2

−sinh−1[ a
a∗ 

1 /2]=1−0
3 /2

0

H 0 t   a∗≡
0

1−0
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Evolution of matter-dominated models – 2

Define a∗≡{ 0

∣0−1∣
0≠1

1 0=1

a/
a *


0
1/2H

0
t/a

*
3/2

Models with:


0
 ≤ 1 (open or flat geometry) 

expand forever;


0
 > 1 (closed geometry) 

eventually recollapse.

Thus there is a relationship 
between mass-energy density 
and spatial curvature on the one 
hand, and the evolution and “fate” 
of the Universe on the other.
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Evolution of matter-dominated models – 3
We can get the age of the Universe (t

0
) in each model by setting a=1:

Fixing the value of H
0
, we have

t0={
2

3 H 0

if 0=1

a∗
3 /2

0
1 /2 H 0

[sin−1 a∗
−1 /2−

a∗−1

a∗ ] if 01

a∗
3 /2

0
1 /2 H 0

[ a∗1

a∗

−sinh−1 a∗
−1 /2] if 01

t0  (open)t0  (flat)t0  (closed)
H

0t 0


0

flat model

closed models

open models

2/3
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We live in a vacuum-dominated universe
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Evolution of models with vacuum energy

In Einstein's original model, we have

which implies

Vacuum energy behaves as a fluid with negative pressure:

If we ignore radiation and matter pressure, this is the only pressure source, so

The model is thus 2/3 matter and 1/3 vacuum energy, and k > 0 (geometry is 
closed).

Notice that if we perturb a, the matter density changes (∝ a–3) but the vacuum 
energy density does not – so the model is unstable.

For  > 0, the model would explode, diluting 
m
 to 0, driving k to 0, and yielding an 

exponential expansion rate (de Sitter space).

a=a=0. ..

=
3 k

8G a2=−
3 P

c2

v=−Pv /c
2

=mv=−
3 Pv

c2 =3v
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Evolution of models with vacuum energy – 2

Adding  (or worse, dark energy with P = w) makes the Friedmann equations 
much harder to solve in general.  Consider non-static spatially flat models without 
radiation (

0
 = 1, 

r,0
 = 0, 

v,0
 = 1 – 

m,0
):

Then

So if  < 0 (attractive), we always get recollapse, and if  ≥ 0 (repulsive), we 
always get expansion.

da
dt

=H 0 [m,0

a
1−m,0a

2]1/2

a t ={ m,0

1−m,0
1 /3

sinh2 /3 3
2 1−m,0 H 0 t  v,00 , m,01

 m,0

m,0−1 1 /3

sin2 /3 3
2 m,0−1 H 0 t  v,00 , m,01
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Evolution of models with vacuum energy – 3
a/

a *


0

1/2H
0
t/a

*
3/2


0
 = 1

 v,
0
 =

 0
.7

  
m

,0
 =

 0
.3


v,0  = –0.7


m,0  = 1.7

 v,0
 = 0   m,0

 = 1

Current evidence from CMB 
and Type Ia supernova data 
suggests


m,0

 ≅ 0.3


v,0 

 ≅ 0.7


0    

 ≅ 1.0

The age of the Universe for
this model is

t0=[ 2
30.7

sinh−1 0.7
0.3 ]H 0

−1

≈0.96 H 0
−1
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Some remaining definitions

Hubble time:  

Hubble radius:

Horizon scale:

Curvature scale: 

ct
0 
~ cH

0
1

horizon scale

tHubble≡H 0
−1 ≈9.78 h−1  Gyr

RHubble≡c H 0
−1 ≈3.00 h−1  Gpc

Rhorizon≡ct0=
2
3

RHubble  for 0=1, =0

Rcurv=
c

H 0
[0−1

k ]−1 /2

∞  as 01
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Comoving coordinates

Proper coordinates r are Eulerian:  u = r

Comoving coordinates x divide out the expansion:    v = x

.

r=a x⇒u=a xa x=a vH r
. .

.
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Linear perturbation theory

On length scales small relative to the horizon scale or curvature radius, we can 
treat small deviations from perfect homogeneity using Newtonian physics:

Perturb these equations about the uniformly expanding homogeneous state:

The base state satisfies

No need for a “Jeans swindle!”

∂
∂ t

∇⋅u=0

∂u
∂ t

u⋅∇u=−
1

∇ P−∇

∇ 2=4G 

in proper coordinates.

=1 P=PP u=H ru
_ _

∂
∂ t

H ∇⋅r=0
∂
∂ t

=−3 H 
_

_
_

_
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Linear perturbation theory – 2

Now substitute into the continuity equation and use the base state equation:

This gives

Cancelling terms and dropping terms of higher than linear order, we get

Similiarly, the perturbed Euler and Poisson equations become

The last term in the Euler equation is just –Hu.

∂
∂ t

1
∂
∂ t

1∇⋅H ruH ru⋅∇ [1]=0
_

_ _ _

−3 H 1
∂
∂ t

13 H∇⋅uH ru⋅∇=0
_ _ _ _

∂
∂ t

H r⋅∇=−∇⋅u

∂u
∂ t

H r⋅∇u=−
1

∇P−∇−u⋅∇H r

∇2=4G 

_
_
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Linear perturbation theory – 3

Convert to comoving coordinates x:  ∇
x
 = a∇

r
, and u = av, so

where and we drop the subscript x on ∇
x
.  Take d/dt of the

continuity equation and ∇⋅ of the Euler equation to obtain

where we have used

d 
d t

=−∇⋅v

d v
dt

=−2
a
a

v− 1
a2

∇P−
1
a2 ∇

∇2=4Ga2

_
.

_

d
dt
≡ ∂
∂ t

H x⋅∇

=−∇⋅v

∇⋅v=−2
a
a
∇⋅v−

cs
2

a2 ∇
2−

1
a2 ∇

2

.. .

. .

cs
2=

∂P
∂

⇒P=cs
2⇒∇P=cs

2∇
_ _
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Linear perturbation theory – 4

Finally, combine the continuity and Euler equations and use the Poisson equation 
to eliminate , yielding

This is the cosmological (matter-dominated) version of the Jeans perturbation 
equation.  As before, we can take a spatial Fourier transform (comoving) to obtain

Again we have instability growth if the RHS is > 0; but the critical wavenumber k
J
 

now changes with time:

Modes with k > k
J
 oscillate (sound waves); modes with k < k

J
 are unstable.

We are interested in unstable modes... so drop the pressure term...

2
a
a
−

cs
2

a2 ∇
2−4G =0

.. . . _

k2
a
a
k=4G −

cs
2 k2

a2 k

.. . . _ (matter domination,
  sub-horizon-scale)

k J=
2
cs
G =

2
cs G 0

a t 3
_
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Linear perturbation theory – 5
If we consider only unstable modes and drop the pressure term, we can use the 
resulting equation for all nonrelativistic matter on sub-horizon scales, even during 
the radiation-dominated era:

Consider the case 
0
 = 1.  We have

Matter domination:

Radiation domination:

Radiation Jeans length is comparable to the horizon size, so treat it as smooth.

The Universe expands too rapidly for dark matter fluctuations to grow.
For baryons, radiation pressure keeps sub-horizon-scale fluctuations from 
growing.

k2
a
a
k=4G k

.. . . _

k
4
3 t

k=
2

3 t2 k⇒k∝t2 /3  (growing)  t−1  (decaying)
.. .

a∝t2 /3 ,  ∝a−3

a∝t1 /2 ,  m∝a−3 ,  r∝a−4

k
1
t
k≈0⇒k∝ ln t    ,   constants

.. .
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Linear perturbation theory – 6
Some additional points regarding sub-horizon-scale matter fluctuations:

● Growing mode corresponds to vorticity-free flow.

  Take Fourier transform to get growing-mode peculiar velocity

● In open universes, fluctuation growth “freezes out.”

● In universes with vacuum energy, fluctuation growth is diminished.

Freeze-out at    for 

∇⋅v=−⇒   mode with ∇⋅v=0  has =0⇒  zero amplitude
. .

vk=−
i
k

H f k k   f ≡
a
k

d k

da
≈0.6  (Lahav et al. 1991)

k∝{ 1
1z

∝t2 /3 1z0
−1

constant 1z0
−1

1z≈m,0
−1/3 m,01,  m,0v,0=1
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Linear perturbation theory – 7
On super-horizon scales the analysis requires linearized general relativity... 
ignoring pressure, the matter and radiation perturbations evolve according to

This equation has two eigenmodes:

     Adiabatic:  matter and photons    Isocurvature:  constant curvature,
     compressed together         matter/radiation ratio perturbed

[ d 2

dt22
a
a

d
dt ][m

r ]=4G [ m 2r

4m /3 8r /3][m

r ]
. _

_

_

_


m

x


r

x


m

x


r

x
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Linear perturbation theory – 8

Adiabatic modes are “honest-to-God” curvature fluctuations.

On sub-horizon scales:  radiation free-streams out of its perturbation.

During radiation-dominated era:  matter fluctuations frozen (dark matter 
because of expansion rate, baryons because of radiation pressure)

During matter-dominated era:  dark matter fluctuations grow; baryon 
fluctuations continue to feel radiation pressure (Silk damping) until 
recombination, then begin to grow

On super-horizon scales:  radiation cannot free-stream.

The adiabatic mode corresponds to the eigenvector (1, 4/3):  
r
 = 4

m
/3 and 

both perturbations evolve via

For  = 1 the growing mode solution is  ∝ a2 (radiation-dominated) or  ∝ a 
(matter-dominated).  (Super-horizon-scale adiabatic perturbations evolve 
keeping the gauge-invariant quantity /( + P/c2) constant.)

2
a
a
=4G m

8
3
r.. . . __
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Linear perturbation theory – 9

Isocurvature modes (sometimes called isothermal modes) are fluctuations in the 
local equation of state.

On sub-horizon scales:  isocurvature modes behave essentially like adiabatic 
modes:  pressure variations turn into density variations.

During radiation domination, modes do not grow, but oscillate as sound waves.
After matter becomes dominant, isocurvature modes behave the same way as 
adiabatic modes.

On super-horizon scales:  through a suitable choice of gauge in the Einstein 
equations (which we are free to do because a unique gauge cannot be 
established outside the horizon),    .

Modes do not grow because pressure variations cannot drive material over 
super-horizon-scale distances.
Compensating temperature fluctuation in radiation field:

  During radiation domination, T/T ≪ 1, hence the name “isothermal.”

=mr=0

=0⇒mconstant×T 4=0

  ⇒
T
T

=−
1
4

m

r

m

m
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Evolution of important proper length scales (
0
 = 1)

log r

log t

hori
zo

n

In
fla

ti
on Radiation 

dominated
Matter 
dominated

Vacuum 
dominated

Jeans 
length

k
2

???

Recombination

k
1

About the size of a 
globular cluster

About the size 
of a cluster of 
galaxies

About the size 
of a galaxy

~1

Horizon 
crossing
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Supercomoving coordinates
Define the comoving density, pressure, temperature, and internal energy for the 
gas via

The “tilde” quantities are the proper density, pressure, etc.  The comoving 
quantities correspond to the proper ones at a = 1 (today).  Also use comoving 
coordinates x.

With these definitions, the Euler equations with self-gravity and cooling are

Redshift terms
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Supercomoving coordinates – 2

The redshift terms can be treated using operator splitting; they look like

Solution is straightforward –

d v
dt

=−2
a
a
v

d E
dt

=−
a
a

[3−12v2 ]
d 
dt

=−
a
a
3−1

.

.

.

dX
dt

=−t X ⇒ X=constant ×e−∫dt

⇒ X n1=X n e
−∫n

n1
 dt
=X n e−n1/2 tO  t2
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Supercomoving coordinates – 3

The Poisson equation for the comoving potential is

The equations of motion for particles (dark matter, stars, etc.) are

And of course the Friedmann equation can be solved numerically with an ODE 
integrator.
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Initializing cosmological simulations (grid)

1.  Compute the Fourier transform of the density fluctuation field, 
k
 =|

k
|exp(i

k
):

For each k-space zone pqr,                          
  an exponential deviate.

phase   a uniform deviate in [0,1).

Note 1:  must have
 since (x) is real-valued.

Note 2:  usually choose initial redshift z so that max[(x)] = 1.

2.  Inverse Fourier transform to get the real-space density fluctuation 
ijk

 = (x
ijk

).

3.  To get the velocity field, use     and the fact that the velocity is 
potential:

then inverse Fourier transform to get v
ijk

 = v(x
ijk

).

∣pqr∣=DzP k pqr , z=0

pqr=2

N−p , N−q , N−r=pqr , N−p , N−q , N−r=−pqr

∇⋅v=−
.

v pqr=
i k pqr

k pqr
2

D

D

pqr

.
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Initializing cosmological simulations (particles)

1.  Take unperturbed positions q to lie on a grid:  

2.  Compute the Fourier transform of the velocity potential  and velocity v:

The 
pqr

 are computed as for grid-based initialization.

3.  Inverse Fourier transform to get the particle velocities.  The displaced particle 
positions are then

qijk=i x , j y , k z

v=∇ ⇒ v pqr=i k pqrpqr

∇⋅v=− ⇒ ∇2=−

  pqr=
pqr

k pqr
2

  v pqr=
i k pqr

k pqr
2 pqr

. .
.

.

.

xijk=qijk
D

D

vijk.



16th Chris Engelbrecht Summer School, January 2005 5: 37

Zel'dovich approximation example

Dark matter particle positions Mesh gas overdensities

   (displacements multiplied by 7)
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