

WAVE FUNCTIONS FOR STRONGLY INTERACTING SYSTEMS

Nandini Trivedi

Ohio State University <u>trivedi@mps.ohio-state.edu</u> Tata institute of Fundamental Research, Mumbai

Strongly correlated problems Many body wave functions Why variational methods Why Monte Carlo: many degrees of freedom

Examples of strongly correlated systems

For PE<<KE

Start with single particle wave functions that diagonalize the KE operator Treat the effects of PE as a perturbation on the single particle states If electron-electron interactions can be treated as an effective one body term $\mathcal{U}_{\text{eff}}[n]$

band structure or electronic structure

For PE>>KE

Density functional theory Hohenberg and Kohn Phys. Rev. 136B, 864 (1964)

Start with the classical ground state; highly degenerate; Perturb with KE

What happens when PE~KE?

J **S**i .**S**j

Potential Energy
$$=U\sum_{i}n_{i_{\uparrow}}n_{i_{\downarrow}}$$

U >> t generates AFM exchange $J = 4t^2/U$ Energy Scales: $J \le t < U$

x= Hole doping =fraction of vacancies

Examples:

Quantum magnetism:

Strongly interacting bosons: atoms in traps; optical lattices:

Feshbach resonance: BCS-BEC crossover:

High temperature superconductivity:

Quantum Hall Effect:

Disorder driven Quantum Phase transitions

Superfluid—Bose Glass transition: (Josephson Junction arrays; helium in aerogels) Superconductor-Insulator Transition: (ultra thin films; high Tc SCs) Metal-Insulator transition: (disordered Mott insulators; 2D electron gases) Lattice models

Heisenberg antiferromagnet

+U Bose Hubbard model

-U Fermion Hubbard Model

+U Fermion Hubbard model

+U Bose Hubbard model + disorder -U Fermion Hubbard model + disorder +U Fermion model + disorder

What theoretical tools do we have to study strongly correlated systems

Feynman diagrams Series expansion Functional integrals Scaling + RG

Exact Diagonalization Variational Methods Quantum Monte Carlo Dynamical Mean Field Theory

Id special techniques

Need non-perturbative methods No small parameter

Bose Hubbard Model

QUANTUM PHASE TRANSITION T=0

Bose Einstein Condensation

ABSORPTION IMAGING

(BEC in r-space)

Anisotropic condensate

Macroscopic occupation of single quantum state

FIG. 1. Total number N (inset) and ground-state fraction N_{ϕ}/N as a function of scaled temperature T/T_{ϕ} . The scale temperature $T_{\phi}(N)$ is the predicted critical temperature, in the thermodynamic (infinite N) limit, for an ideal gas in a harmonic potential. The solid (dotted) line shows the infinite (finite) N theory curves. At the transition, the cloud consists of 40 000 atoms at 280 nK. The dashed line is a least-squares fit to the form $N_{\phi}/N = 1 - (T/T_c)^3$ which gives $T_c = 0.94(5)T_{\phi}$. Each point represents the average of three separate images.

Rb atoms at 10nK

M. Greiner, O. Mandel, T. Esslinger, T.W. Hansch, I. Bloch, Nature 415, 39 (2002)

Bose Hubbard Model

Fisher et al PRB 40, 546 (1989)

HEISENBERG ANTIFERROMAGNET

S=1/2

$$H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j = \frac{J}{2} \sum_{\langle ij \rangle} (S_i^+ S_j^- + S_j^- S_i^+) + J \sum_{\langle ij \rangle} S_i^z S_j^z$$

 $S_1^+S_2^-\left|\downarrow\uparrow\uparrow\right\rangle = \left|\uparrow\downarrow\downarrow\right\rangle$

For J<0 Ground State:

FERROMAGNET

CLASSICAL GROUND STATE: NEEL ANTIFERROMAGNET

$$H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j = \frac{J}{2} \sum_{\langle ij \rangle} (S_i^+ S_j^- + S_j^- S_i^+) + J \sum_{\langle ij \rangle} S_i^z S_j^z$$

$$J_z > 0; J_{xy} \neq 0$$

QUANTUM FLUCTUATIONS INTRODUCED BY SPIN FLIPS

$$S_1^+S_2^- |\downarrow_1\uparrow_2\rangle = |\uparrow_1\downarrow_2\rangle$$

At finite T thermal fluctuations destroy long range order in $d \leq 2$

What happens at T=0: do quantum fluctuations destroy long range order?

A sublattice
$$\mathcal{E}_i = \begin{cases} i \in A \\ i \in B \end{cases}$$
 B sublattice

$$m^+ = \langle \mathcal{E}_i S_i^z \rangle$$

1D: Exact results: Bethe and Hulthen, 1930

	Quantum fluctuations completely destroy long range order in 1D	
m^+	0	0.5
Eo/N	-0.42J	-0.25
	Heisenberg QAFM	Neel State

2D: No exact results for Quantum Heisenberg model

XY model:
$$J_z = 0; J_{xy} \neq 0$$
 $m^+ \neq 0$
XXZ model: $J_{xy} / J_z > 1.78$ $m^+ \neq 0$

Kennedy, Lieb, Shastry PRL, 61, 2582 (1988); Kubo and Kishi, PRL 61, 2585 (1988)

What happens when $J_{xy} = J_z$?

EXACT TRANSFORMATION S=1/2 to hard core bosons

$$H = J \sum_{\langle ij \rangle} S_i \cdot S_j = \frac{J}{2} \sum_{\langle ij \rangle} S_i^+ S_j^- + S_j^- S_i^+ + J \sum_{\langle ij \rangle} S_i^z S_j^z$$
$$S_i^+ \rightarrow a_i^+$$
$$S_i^- \rightarrow a_i$$
$$S_i^z = S_i^+ S_j^- - \frac{1}{2} \rightarrow n_i - \frac{1}{2} = a_i^+ a_i - \frac{1}{2}$$

Matsubara and Matsuda Prog. Theor. Phys. 16, 569 (1956)

—X—

—X

commute on different sites—same as boson operators

anticommute on same site

$$\left(S_{i}^{+}\right)^{2}\left|0\right\rangle = 0 \Longrightarrow \left(a_{i}^{+}\right)^{2}\left|0\right\rangle = 0$$

 $\Rightarrow n_i = 0,1$ (Hard Core Bosons)

Sublattice rotation on B sublattice $S_i^+ \rightarrow \mathcal{E}_i a_i^+$

$$H = -\frac{J}{2} \sum_{\langle i,j \rangle} (a_i^+ a_j + a_j^+ a_i) + J \sum_{\langle i,j \rangle} n_i n_j + E_N$$

+ hard core constraint or a given site through commutation relations

KE of bosons

Repulsion between bosons on nearest neighbor sites

 $E_N = -JNz/8$

Classical Neel state energy; z=#neighbors

EXACT DIAGONALIZATION: example: Nsites=4; Nboson=2; Periodic Boundary C

$$H = -\frac{J}{2} \sum_{\langle i,j \rangle} (a_i^+ a_j + a_j^+ a_i) + J \sum_{\langle i,j \rangle} n_i n_j \left(\begin{array}{ccccc} 1 & 0 & 0 & 0 & -1/2 & -1/2 \\ 0 & 1 & 0 & 0 & -1/2 & -1/2 \\ 0 & 0 & 1 & 0 & -1/2 & -1/2 \\ 0 & 0 & 1 & 0 & -1/2 & -1/2 \\ 0 & 0 & 0 & 1 & -1/2 & -1/2 \\ 1/2 & -1/2 & -1/2 & -1/2 & 0 & 0 \\ 1/2 & -1/2 & -1/2 & -1/2 & 0 & 0 \\ 1/2 & -1/2 & -1/2 & -1/2 & 0 & 0 \\ \end{array} \right)$$

$$\mathbf{X} \quad \mathbf{X} \quad \mathbf{X} \quad |2\rangle \qquad \text{Eigenvalues: -1, 0, 1, 1, 1, 2}$$

$$\mathbf{X} \quad \mathbf{X} \quad |3\rangle \quad \frac{E_0}{N} = \left(\frac{-1}{4} + \frac{-2}{8}\right)J = -0.5J \xrightarrow{L \to \infty} -0.42J$$

$$\mathbf{Ground State} \quad |4\rangle \quad \Psi_0 = \frac{1}{\sqrt{12}}(1|1\rangle + 1|2\rangle + 1|3\rangle + 1|4\rangle + 2|5\rangle + 2|6\rangle)$$

$$\mathbf{X} \quad \mathbf{X} \quad |5\rangle \quad m^+ = \left\langle\sum_i \varepsilon_i S_i^z\right\rangle = \left\langle\sum_i \varepsilon_i (n_i - 1/2)\right\rangle = \left\langle\sum_i \varepsilon_i n_i\right\rangle$$

$$\mathbf{X} \quad \mathbf{X} \quad |6\rangle \quad m^+ = \frac{\left\langle 5|\sum_i \varepsilon_i n_i|5\rangle}{\left\langle \Psi_0|\Psi_0 \right\rangle} \times 2 = \frac{4}{12} = \frac{1}{3} \xrightarrow{L \to \infty} 0$$

Limitations of Exact Diagonalization

Suppose we want to study a 4x4 system Nsites=16 Nboson=8

Number of states
$$c_8^{16} = \frac{16!}{(8!)^2} = 12870$$

Number of elements in H= $12870^2 = 165636900$

Amount of storage 8 bytes per element= $1.33 \times 10^9 bytes = 1GBram$

VARIATIONAL APPROACH

Ground state many body wave function is REAL and NODELESS Statement of Marshall sign for spin systems Variational calculation: Example Nsites=4 Nboson=2

$$\Psi_{T}(R) = \prod_{i < j} f \begin{bmatrix} \mathbf{1.0} & \mathbf{1.0} \\ \mathbf{0} & f_{1} & \mathbf{0} \end{bmatrix} \begin{pmatrix} \Psi_{T} | \Psi_{T} \rangle = 2 + 4f_{1}^{2} \\ \mathbf{0} & \mathbf{X} & \mathbf{X} \end{bmatrix} \begin{bmatrix} \mathbf{1.0} & \mathbf{0} \\ \mathbf{0} & f_{1} & \mathbf{0} \end{bmatrix} \begin{pmatrix} \Psi_{T} | \mathbf{1} \rangle = f_{1} \\ \mathbf{0} & \mathbf{X} & \mathbf{X} \end{bmatrix} \begin{bmatrix} \mathbf{1.0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \Psi_{T} | \mathbf{1} \rangle \end{bmatrix} = f_{1} \\ \mathbf{0} & \mathbf{X} & \mathbf{X} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \Psi_{T} | \mathbf{1} \rangle \end{bmatrix} = f_{1} \\ \mathbf{0} & \mathbf{X} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \Psi_{T} | \mathbf{1} \rangle \end{bmatrix} = f_{1} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \Psi_{T} | \mathbf{1} \rangle \end{bmatrix} = f_{1} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \Psi_{T} | \mathbf{1} \rangle \end{bmatrix} = f_{1} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \Psi_{T} | \mathbf{1} \rangle \end{bmatrix} = f_{1} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \Psi_{T} | \mathbf{1} \rangle \end{bmatrix} = f_{1} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \Psi_{T} | \mathbf{1} \rangle \end{bmatrix} = f_{1} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \Psi_{T} | \mathbf{1} \rangle \end{bmatrix} = f_{1} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \Psi_{T} | \mathbf{1} \rangle \end{bmatrix} = f_{1} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \Psi_{T} | \mathbf{1} \rangle \end{bmatrix} = f_{1} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \Psi_{T} | \mathbf{1} \rangle \end{bmatrix} = f_{1} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \Psi_{T} | \mathbf{1} \rangle \end{bmatrix} = f_{1} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \Psi_{T} | \mathbf{1} \rangle \end{bmatrix} = f_{1} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \Psi_{T} | \mathbf{1} \rangle \end{bmatrix} \begin{bmatrix}$$

$$H = -\frac{J}{2} \sum_{\langle i,j \rangle} (a_i^+ a_j + a_j^+ a_i) + J \sum_{\langle i,j \rangle} n_i n_j = -\frac{J}{2} \hat{T} + J \hat{V}$$

 $E_t / N = -1/4 + E_N / N = -1/4 - 1/4 = -0.5J$