TRIAL MANY BODY WAVE FUNCTION

$$
\begin{gathered}
\Psi_{T}\left(r_{1}, r_{2}, \ldots r_{N}\right) \equiv \Psi(R) \\
\langle\hat{O}\rangle=\frac{\left\langle\Psi_{T}\right| \hat{O}\left|\Psi_{T}\right\rangle}{\left\langle\Psi_{T} \mid \Psi_{T}\right\rangle}=\frac{\sum_{R}\left|\Psi_{T}(R)\right|^{2} O(R)}{\sum_{R}\left|\Psi_{T}(R)\right|^{2}}=\sum_{R} P(R) O(R)
\end{gathered}
$$

Many interacting particles
Multi dimensional integrals

Classical Stat Mech

$$
H=-J \sum_{\langle i j\rangle} S_{i} S_{j} \quad S_{i}= \pm 1
$$

N sites: each site can be \uparrow or $\downarrow=2^{N}$ configurations

$$
\begin{aligned}
Z & =T r e^{-\beta H}=\sum_{\{C\}} e^{-\beta E(C)} \\
E & =\frac{1}{Z} \sum_{\{C\}} e^{-\beta E(C)} E(c)
\end{aligned}
$$

HOW CAN WE EVALUATE MULTIDIMENSIONAL INTEGRALS??

USE MONTE CARLO METHODS

Evaluating Multi-dimensional integrals

Speed

Quadrature method:
Nparticles=8

Monte Carlo is an efficient way to evaluate integrals For large numbers of dof

10 divisions
dimensions $\mathrm{d}=2$

Evaluate integrand at $10^{2 * 8}$ points
Computation speed $=10$ MFLOPS $=10^{7}$ Evaluations $/ \mathrm{sec}$

Integrand evaluation takes $\sim 10^{9}$ sec ~ 40 years
Monte Carlo < 1 minute for 1\% accuracy

ACCURACY

\# of points at which integrand evaluated=M
\# degrees of freedom=f=d* Nparticles
Error: $\quad \sigma_{\text {quad }} \sim M^{-2 / f}$
$\sigma_{M C} \sim M^{-1 / 2}$
MC more efficient for $\quad f=d N \geq 4$

Evaluating integrals

$$
\begin{aligned}
& I=\int_{0}^{1} d x f(x)=\int_{0}^{1} d x G_{p}(x) G_{s}(x) \\
& G(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-(x-a)^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

Monte Carlo I:
(a) Pick x at random in the range $[0,1]$
(b) Evaluate

$$
f(x)=G_{p}(x) G_{s}(x)
$$

at the randomly picked x

$$
I=\sum_{x_{i}} f\left(x_{i}\right)
$$

CODES PROVIDED

Exact result: exact.f Quadrature method: quad.f Monte Carlo I: mc1.f Monte Carlo II: mc2.f (with importance sampling)

Monte Carlo II with importance sampling

a) Pick x with probability $G_{p}(x)$ which is sharply peaked
b) Make a list of points $X=\left\{x_{1}, x_{2}, \ldots x_{M}\right\}$
such that the probability of finding a particular x_{i} in this set $P\left(x_{i}\right)=G_{p}\left(x_{i}\right)$

$$
I=\sum_{x \in X} G_{s}(x)
$$

How to make such a list? METROPOLIS ALGORITHM
Start with some initial x
Let $W\left(x, x^{\prime}\right)$ be a transition probability or a rule which takes $x-\rightarrow x$ '
$W\left(x, x^{\prime}\right)$ must satisfy:

$$
\begin{aligned}
& W\left(x \rightarrow x^{\prime}\right) \geq 0 \\
& \sum_{x^{\prime}} W\left(x \rightarrow x^{\prime}\right)=1 \\
& P\left(x^{\prime}\right)=\sum_{x} P(x) W\left(x \rightarrow x^{\prime}\right)
\end{aligned}
$$

Ergodicity: must be able to access all phase space

DETAILED BALANCE

$$
P(x) W\left(x \rightarrow x^{\prime}\right)=P\left(x^{\prime}\right) W\left(x^{\prime} \rightarrow x\right)
$$

METROPOLIS ALGORITHM

Is one algorithm that imposes detailed balance
$W\left(x \rightarrow x^{\prime}\right)=\min \left(1, \frac{P\left(x^{\prime}\right)}{P(x)}\right)$
Operationally

1. Pick a starting point x_{0}
2. Evaluate $P\left(x_{0}\right)$
3. Choose $x_{\text {trial }}$ at random
4. Eviluate $P\left(X_{\text {trial }}\right)$
5. If $\frac{P\left(x_{\text {trial }}\right)}{P\left(x_{0}\right)} \geq r$ (random number $[0,1]$) put $X_{1}=x_{\text {trial }}$ and put X_{1} in the list X
6. If $\frac{P\left(x_{\text {trial }}\right)}{P\left(x_{0}\right)}<r$ put $x_{1}=x_{0}$ and put x_{1} in the list X

$$
I=\int_{0}^{1} d x G_{p}\left(x ; a_{2}, \sigma_{2}\right) G_{s}\left(x ; a_{1}, \sigma_{1}\right)
$$

$$
a_{1}=0 ; \sigma_{1}=0.5
$$

$$
a_{2}=0.5 ; \sigma_{2}=0.05
$$

Exact=0.48393

$$
G(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-(x-a)^{2}}{2 \sigma^{2}}}
$$

$$
\begin{aligned}
& a_{1}=0 ; \sigma_{1}=0.5 \\
& a_{2}=0.5 ; \sigma_{2}=0.01
\end{aligned}
$$

Exact=0.48393

MC1: without importance sampling
MC2: with imp. sampl.

boson.f

$\Psi_{T}=\prod_{k j} f$

Long range correlations in ground state

EXPECTATION VALUES AND MONTE CARLO

$$
\Psi(R) \equiv \Psi\left(r_{1}, r_{2}, \ldots r_{N}\right)=\prod_{i<j} f\left(r_{i j}\right)
$$

Many interacting particles

$$
E_{T}=\frac{\left\langle\Psi_{T}\right| H\left|\Psi_{T}\right\rangle}{\left\langle\Psi_{T} \mid \Psi_{T}\right\rangle}=\frac{\sum_{R, R^{\prime}}\left\langle\Psi_{T} \mid R\right\rangle\langle R| H\left|R^{\prime}\right\rangle\left\langle R^{\prime} \mid \Psi_{T}\right\rangle}{\sum_{R}\left\langle\Psi_{T} \mid \Psi_{T}\right\rangle}
$$

Multi dimensional integrals

$$
E_{T}=\sum_{R} P(R) \sum_{R^{\prime}}\langle R| H\left|R^{\prime}\right\rangle \frac{\Psi_{T}\left(R^{\prime}\right)}{\Psi_{T}(R)}=\sum_{R \in P(R)} \varepsilon(R)
$$

Generate a list of configurations $\{R\}$ with $\quad P(R)=\frac{\left|\Psi_{T}(R)\right|^{2}}{\sum_{R}\left|\Psi_{T}(R)\right|^{2}}$
Calculate the energy $\varepsilon(R)$ In each configuration R

NT and D.M. Ceperley PRB 41, 4552 (1990)

GREEN FUNCTION / PROJECTOR QUANTUM MONTE CARLO

AIM: Filter out of a trial wave function the component of the true ground state

$$
\begin{aligned}
& H\left|\Phi_{\alpha}\right\rangle=\varepsilon_{\alpha}\left|\Phi_{\alpha}\right\rangle \quad \text { Exact eigenstates of } \mathrm{H} \\
& \Psi_{n}=\left(e^{-\tau H}\right)^{n} \Psi_{T} \\
& \Psi_{n}(R)=\sum_{\alpha} \Phi_{\alpha}(R) e^{-n \tau \varepsilon_{\alpha}}\left\langle\Phi_{\alpha} \mid \Psi_{T}\right\rangle
\end{aligned}
$$

Ground state $\quad \mathcal{E}_{0}$ decays most slowly

$$
\begin{array}{r}
\operatorname{Lt}_{n \rightarrow \infty} \Psi_{n}(R) \rightarrow \Phi_{0}(R)\left\langle\Phi_{0} \mid \Psi_{T}\right\rangle \\
\downarrow
\end{array}
$$

Overlap of true ground state with trial wave function

Finite size scaling

$E / N J=-0.6692 \pm 0.0002$
Best result obtained by GFMC

SUPERFLUID

Off diagonal long range order

$$
\left\langle b_{i}^{+}\right\rangle \neq 0
$$

Magnetization in XY plane

$$
\left\langle S_{i}^{+}\right\rangle \neq 0
$$

MAGNET

In a subspace with fixed number of particles
$h(l)=\left\langle b_{i}^{+} b_{i+l}\right\rangle \xrightarrow[l \rightarrow \infty]{ }$ const $\neq 0 \quad h(l \rightarrow \infty)=\left(m_{x}^{+}\right)^{2}+\left(m_{y}^{+}\right)^{2}$

Condensate fraction
$g(l)=\left\langle n_{i} n_{i+1}\right\rangle \xrightarrow[l \rightarrow \infty]{\longrightarrow}\left(m_{z}^{+}\right)^{2}$
Diagonal long range order

Sublattice magnetization in XY plane

Sublattice magnetization along z

Staggered magnetization survives inspite of quantum fluctuations

Quantum Monte Carlo is not one black box
Variational QMC
Green function or Diffusion QMC
Path Integral QMC
Determinantal QMC
Comparisons of the different QMC techniques

SIGN PROBLEM IN DIFFERENT INCARNATIONS

GFMC: Nodes in Wave Function

$$
\begin{gathered}
\langle\hat{O}\rangle=\sum_{\{S\}} P(\{S\}) O(\{S\}) \\
\widetilde{P}=|P| \\
\langle\hat{O}\rangle=\frac{\langle O \operatorname{sgn}(\tilde{P})\rangle_{\tilde{P}}}{\langle\operatorname{sgn}(\tilde{P})\rangle_{\tilde{P}}}
\end{gathered}
$$

small average sign at low T leads to large fluctuations in MC averages
Recent progress: Projected techniques + Det QMC: Imada; Shiwei Zhang

Energy is sensitive only to short range correlations in wave function
For an improved description must include contribution from zero point motion of elementary excitations in the ground state

$$
\left.\begin{array}{r}
H_{Z P}=\frac{1}{2} \sum_{q<q_{c}} m_{q}\left(\dot{\rho}_{q} \dot{\rho}_{-q}+\omega_{q}^{2} \rho_{q} \rho_{-q}\right) \\
\Psi_{Z P}=\prod_{q<q_{c}} \exp \left(-\frac{1}{2} m_{q} \omega_{q} \rho_{q} \rho_{-q}\right)=\prod_{i<j} \exp \left(-\frac{\alpha}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}\right) \\
\rho_{q}=\frac{1}{N} \sum_{i} e^{i \bar{q} \cdot r_{i}} \\
\hbar c=\frac{\pi \alpha\left|T_{k}\right|}{2} J a
\end{array} m_{q} \sim \frac{1}{q^{2}} \quad \omega_{q} \sim c q\right]
$$

My teaching philosophy is summarized in this saying by Confucius:

I hear and I forget

I see and I remember

I do and I understand

