E. Fermi: Notes on Thermodynamics and Statistics (1953))

70 - Matter in unusual conditions 70 a 12 Election proton gas 10 Non deg. electron gas Relativ Degenerate Atomic gas 4 Condensed 2 to 14 12 12 26 28 30 32 log p 8 10 127 14 16 equation of state controlled by ordinary Start from o Journa chemical rees.

Neutron stars below the surface

Surface is liquid. Expect primarily ⁵⁶Fe with some ⁴He T $\gg 10^7$ K ' 1 KeV >> T_{melting} (⁵⁶Fe)

Ionization:

 $r_{\text{Thomas-Fermi}} = 0.8853 a_0/Z^{1/3}$

Matter begins to ionize when $r_c = (3/4\pi n_{atoms})^{1/3} > r_{F}$

 $=> \rho > m_n AZ/a_0^3$ 10 AZ g/cm³ > 10⁴ g/cm³ for ⁵⁶Fe; A = atomic no.

Electron degeneracy:

 $T \ll T_e = \text{electron degeneracy temperature} = p_e^2 / 2m_e = 2.5 \text{\pounds} \ 10^9 \ (\rho / \rho_s)^{2/3}$ $p_e = \text{electron Fermi momentum;}$ $\rho_s = ((m_e c)^3 / 3\pi^2 \sim 3) m_n A / Z + 3 \text{\pounds} \ 10^5 \text{ g/cm}^3$ $\rho \gg \rho_s \Rightarrow \text{electrons are relativistic.}$

At T= 10⁸ K, degeneracy sets in at $\rho > 3 \text{ £ } 10^4 \text{ g/cm}^3$

The dark inside: no photons

Photon dispersion relation in matter

$$\omega_{\rm photon}(k) = \sqrt{c^2 k^2 + \omega_{\rm plasma}^2}$$

where plasma frequency is given by

$$\omega_{\rm p}^2 = \frac{4\pi n_e e^2}{m_e}$$

$$(\hbar\omega_{\rm p})^2 = \frac{4}{3\pi} \frac{e^2}{\hbar c} \left(\frac{p_e}{m_e c}\right)^3 (m_e c^2)^2$$

At T = 10⁸ K, ~ $\omega_p >> T$ for $\rho >> 3$ £ 10⁵ g/cm³

Photon number

$$n_{\rm photons} \sim e^{-\hbar\omega_p/T}$$

greatly suppressed

Matter solidifies

$$T_{melting} \gg E_{binding} / \Gamma_m$$
 where $\Gamma_m \gg 10^2$

Wigner-Seitz cell containing one atom $4\pi R_c^3 / 3 = 1/n_{atoms} = m_n A/\rho$

$$-E_b \simeq -\int_{\text{cell}} d^3 r \frac{Ze^2}{r} n_e + \frac{3}{5} \frac{Z^2 e^2}{R_c} = -\frac{9}{10} \frac{Z^2 e^2}{R_c}$$
$$T_m \simeq \frac{9}{10} \frac{(Ze)^2}{\Gamma_m R_c} \simeq \frac{Z^{5/3}}{\Gamma_m} \frac{e^2}{\hbar c} m_e c^2 \left(\frac{\rho}{\rho_s}\right)^{1/3}$$

For Z = 26, $\Gamma_m = 10^2$, $T_m \gg 10^8$ K Melt at $\rho \gg 5 \text{ \pounds } 10^7 \text{ g/cm}^3$, about 10m below surface

Form BCC lattice

Nuclei before neutron drip

 $e^+p \longrightarrow n + v$: makes nuclei neutron rich as electron Fermi energy increases with depth $n \longrightarrow p + e^- + \overline{v}$: not allowed if e^- state already occupied

Beta equilibrium: $\mu_n = \mu_p + \mu_e$

Shell structure (spin-orbit forces) for very neutron rich nuclei? Do N=50, 82 remain magic numbers? Will be explored at rare isotope accelerators, RIA, RIKEN, GSI

Nuclear sizes: minimize energy

1) At fixed Z/A = x, balance nuclear Coulomb and surface energies

 $E_{\text{surface}} \gg R_n^{2} \gg A^{2/3} \qquad R_n = \text{nuclear radius}$ $E_{\text{Coulomb}} \gg Z^2/R_n \gg Z^2/A^{1/3} \gg x^2 A^{5/3}$

Minimize surface + Coulomb per nucleon:

$$\frac{\partial}{\partial A} \left(\cdots A^{-1/3} + \cdots x^2 A^{2/3} \right) = 0$$

 $=> E_{surface} = 2 E_{Coul}$ A $12/x^2$ (cf. ⁵⁶Fe at x 1/2)

2) Best Z/A: No energy cost to convert n to $p+e^-$ (+neutrino) => beta equilibrium condition on chemical potentials: $\mu_n =$

$$: \mu_n = \mu_p + \mu_e$$

Valley of **b** stability

in neutron stars

nuclei before drip

Neutron drip

fill n continuum states

- bound N-states

Beyond density $\rho_{drip} \gg 4.3 \text{ \pounds } 10^{11} \text{ g/cm}^3$ neutron bound states in nuclei become filled. Further neutrons must go into continuum states. Form degenerate neutron Fermi sea.

At drip point, $\mu_n = m_n c^2$. Beta equilibrium and $E_{surf} = 2 E_{coul} = > A' 122, Z' 39 =>$

x 0.32, $\mu_e = 24.6$ MeV, and $\rho_{drip} = 4.3$ £10¹¹g/cm³.

Neutrons in neutron sea are in equilibrium with those inside nucleus

 $(\text{common } \mu_n)$

Protons never drip, but remain in bound states until nuclei merge into interior liquid.

Hartree-Fock nuclear density profiles

J. Negele and D. Vautherin, Nucl. Phys. A207 (1973) 298

Figure 5 Density profiles of lattice unit cells in the crust for various average densities. The upper curve is the neutron number density; the lower is the proton number density; n_b denotes the average nucleon density, measured in nucleons/cm³. The horizontal axis is distance in fm. From (27). (The density of nuclear matter is 1.7×10^{39} nucleons/cm³.)

Cross sections of nuclei in crust

neutron drip

New states of nuclei in depths of neutron star crust

Bohr-Wheeler fission: nuclei distort if $E_{coul}^0 = 3Z^2e^2/5r_N > 2 E_{surface}$ => $Z^2/A \ge 50$

Above neutron drip: $E_{coul} = E_{coul}^0 \{1 - (3/2)(r_N/r_c) + (1/2)(r_N/r_c)^3\},$ taking lattice Coulomb energy into account

 r_N = radius of nucleus, r_c = radius of Wigner-Seitz cell

Surface vs. Coulomb energies:

 $E_{surf} = 2E_{Coul} \implies \text{fission if } E^{0}_{coul} > 2E_{surf} = 4E_{Coul}$ $\{1-(3/2)(r_{N}/r_{c})+(1/2)(r_{N}/r_{c})^{3}\} < 1/4 \implies r_{N}/r_{c} \ge 1/2$

When nuclei fill > 1/8 of space => fission. Onset of non-spherical shapes.

Lorentz, Pethick and Ravenhall PRL 70 (1993) 379

over half the mass of the crust !!

Important effects on crust bremsstrahlung of neutrinos, pinning of n vortices, ...

Pasta Nuclei:

FIG. 1. Energies per unit volume as a function of density for the one-fluid phase, and the three-, two-, and onedimensional nucleus phases, with (for FPS) the bubble (inverted structure) versions of the first two, after subtraction of the energy of the two-fluid phase, neglecting Coulomb and interface effects. The two nuclear interactions illustrated are SKM [6] and the version of FPS [8, 9] described in the text.

Energies of pasta phases

Density profile of neutron star

FIG. 2. Profile of a neutron star crust as given by FPS [8, 9]. The distance (in km) is measured from the surface. The solid line is density ρ/m_n , in fm⁻³, and the dashed line is pressure, in MeV fm⁻³, plotted logarithmically. Vertical lines indicate the phase boundaries described in the text. At the top is shown the superfluid energy gap [22].

Lorentz, Pethick and Ravenhall, PRL 70 (1993) 379

Simulations of pasta phase

FIGURE 3. (Color) Nucleon distributions of the pasta phases in cold matter at x = 0.5; (a) sphere phase, $0.1\rho_0$ ($L_{\text{box}} = 43.65 \text{ fm}$, N = 1372); (b) cylinder phase, $0.225\rho_0$ ($L_{\text{box}} = 38.07 \text{ fm}$, N = 2048); (c) slab phase, $0.4\rho_0$ ($L_{\text{box}} = 31.42 \text{ fm}$, N = 2048); (d) cylindrical hole phase, $0.5\rho_0$ ($L_{\text{box}} = 29.17 \text{ fm}$, N = 2048) and (e) spherical hole phase, $0.6\rho_0$ ($L_{\text{box}} = 27.45 \text{ fm}$, N = 2048), where L_{box} is the box size and N is the total number of nucleons. The whole simulation box is shown in this figure. The red particles represent protons and the green ones neutrons. Taken from Ref. [39].

G. Watanabe, T. Maruyama, K. Sato, K. Yasuoka, T. Ebisuzaka. PRL. 94 (2005) 031101

The Liquid Interior

Neutrons (likely superfluid) $\gg 95\%$ Non-relativisticProtons (likely superconducting) $\gg 5\%$ Non-relativisticElectrons (normal, $T_c \gg T_f e^{-137}) \gg 5\%$ Fully relativistic

Eventually muons, hyperons, and possibly exotica: pion condensation kaon condensation quark droplets bulk quark matter $n_0 = baryon density$

 n_0 = baryon density in large nuclei ' 0.16 fm⁻³ 1fm = 10¹³cm

Phase transition from crust to liquid at $n_b = 0.7 n_0 = 0.09 \text{ fm}^{-3}$ or $\rho = \text{mass density} \gg 2 \text{ } \text{E} 10^{14} \text{g/cm}^3$

Why "neutron" star?

β equilibrium: $μ_n = μ_p + μ_e$. Charge neutrality: $n_p = n_e$

Non-interacting matter: $\mu_n = p_n^2/2m_n, \ \mu_p = p_p^2/2m_p, \ \mu_e = cp_e = cp_p$ $=> p_e/p_n \ p_n/2m_n c => n_p/n_n \ (p_n/2m_n c)^3 \ 0.03$ Mean field effects: $(p_n^2/2m_n) + V_n = (p_p^2/2m_p) + V_p + p_p c$ $V_p < V_n => n_p/n_n \ 0.05$

Matter is primarily neutron liquid

Estimate the value of $V_n - V_p$ to get $n_p/n_n = 0.05$

Properties of matter near nuclear matter density

Determine N-N potentials from

- scattering experiments E<300 MeV
- deuteron, 3 body nuclei (³He, ³H)
- ex., Paris, Argonne, Urbana 2 body potentials

Solve Schrödinger equation by variational techniques

Large theoretical extrapolation from low energy laboratory nuclear physics at near nuclear matter density

Two body potential alone:

Underbind ³H: Exp = -8.48 MeV, Theory = -7.5 MeV ⁴He: Exp = -28.3 MeV, Theory = -24.5 MeV

Importance of 3 body interactions

Attractive at low density Repulsive at high density

Various processes that lead to three and higher body intrinsic interactions (not described by iterated nucleon-nucleon interactions.

Stiffens equation of state at high density Large uncertainties

3-body forces in d+p elastic scattering: polarization transfer

Figure 5.7: Induced Polarization $P^{y'}$. The predictions with and without Δ -isobar excitation are shown with red solid and dotted lines, respectively. A dotted line is the calculation with TM' 3NF and the calculation with the Urbana IX 3NF is shown with a dashed line. Solid and dot-dot-dashed lines in the figure are the 2N force predictions using the CDBonn and AV18 potentials, respectively.

Energy per nucleon vs. baryon density in symmetric nuclear matter

Akmal, Pandharipande and Ravenhall, Phys. Rev. C58 (1998) 1804

Energy per nucleon in pure neutron matter

Akmal, Pandharipande and Ravenhall, Phys. Rev. C58 (1998) 1804

Proton fraction $x_p = n_p/(n_p+n_n)$ in matter in beta equilibrium

Electron chemical potential vs. baryon density

 $e^{-} => \mu^{-}$ when $\mu_{e} > m_{\mu}$

Neutron Star Models

Equation of state: E = energy density = ρc^2 n_b = baryon density $P(\rho)$ = pressure = $n_b^2 \partial (E/n_b)/\partial n_b$

Tolman-Oppenheimer-Volkoff equation of hydrostatic balance:

$$\frac{\partial P(r)}{\partial r} = -\frac{G}{r^2} \frac{\left(\rho(r) + \frac{P(r)/c^2}{1}\right)}{1 - 2m(r)G/rc^2} \left(m(r) + \frac{4\pi P(r)r^3/c^2}{1 - 2m(r)G/rc^2}\right)$$

$$m(r) = \int_0^r \rho(r') 4\pi r'^2 dr'$$

general relativistic corrections

= mass within radius r

1) Choose central density: $\rho(r=0) = \rho_c$ 2) Integrate outwards until P=0 (at radius R) 3) Mass of star $M = \int_{0}^{R} \rho(r) 4\pi r^2 dr$

Problem: Solve the TOV equation analytically for constant mass density, ρ

Mass density vs. radius inside neutron star for various equations of state

M= 0.009 - 1.4M-

M=1.4M-

soft

e.o.s.

6

2

AVI4+UVII

UVI4+TNI

UVI4+UVII

stiff

14

16

12

8

r (km)

10

Families of cold condensed objects: mass vs. central density

BPS, Ap.J 170, 299 (1971)

Mass vs. central density

Maximum neutron star mass

Mass vs. radius

Akmal, Pandharipande and Ravenhall, 1998

Mass vs. radius, and stability

Binding energy per nucleon (MeV) vs. nucleon number

BPS, Ap.J 170, 299 (1971)