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We now have a standard 
cosmological model

General Relativity + Uniform Universe      Big Bang

Density of universe determines its fate + shape

Universe is flat (total density = critical density)

Atoms 4%

Dark Matter 23%

Dark Energy (cosmological constant?) 72%

Universe has tiny ripples

Adiabatic, scale invariant, Gaussian Fluctuations 

Harrison-Zeldovich-Peebles

Inflationary model

THIS MODEL FITS ALL OF THE COSMOLOGICAL DATA!



Observing the CMB



Looking for CMB 
Fluctuations



CMB Dipole



CMB Fluctuations





Sunyaev & Zeldovich



Best fit 
model

cosmic variance

Temperature

Temperature-
polarization

1 deg

85% of 
sky



Model Predicts Today’s Universe

SDSS Tegmark et al. 

Astro-ph/0310723

Verde et al. (2003)



Consistent Parameters
WMAP+CBI

+ACBAR All CMB(Bond) CMB+
2dFGRS

CMB+SDSS 
(Tegmark)

Ωbh2 .023 + .001 .0230 + .0011 .023 + .001 .0232 + .0010

Ωxh2 .117 + .011 .117 + .010 .121 + .009 .122 + .009

h .73 + .05 .72 + .05 .73 + .03 .70 + .03

ns .97 + .03 .967 + .029 .97 + .03 .977 + .03

σ8 .83 + .08 .85 + .06 .84 + .06 .92 + .08



Standard Cosmology
We know have a standard cosmological model that answers 
most of the “old” cosmological questions:

What is the shape and size of the universe?

How fast is the universe expanding? 

 How old is the universe?

What is the composition of the universe?

How do galaxies form?

What is the origin of the primordial fluctuations?



New Questions
Physics that we don’t know (String theory, quantum cosmology,…

How did the universe begin?

What is the dark energy?

What is the dark matter?

Physics that we don’t know how to calculate (Non-linear hydro, star 
formation…

First stars

Galaxy formation



CMB Observations
Large angle observations (> 5     l 
< 2000) probes physics at the 
surface of last scatter (z ~1100)

Small angle observations (< 5’     
l > 2000) probes local (z~0.5) 
physics

Atacama Cosmology 
Telescope

WMAP



Lecture Outline
Lecture 1

Overview

Gaussian Random Variables

CMB and Mass Fluctuations

Lecture 2: Evolution of Fluctuations

Lecture 3: Polarization

Lecture 4: Statistics of CMB Fluctuations

Lecture 5: Clusters: SZ Effect and Probing the Growth of 
Dark Energy

Lecture 6: Next Step: Kinetic SZ measurements, 
Gravitational Lensing
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p(x) =
1√
πσ

exp
(
− x2

2σ2

)
(1)

∫
p(x)dx = 1 (2)

< x >=
∫

p(x)xdx = 0 (3)

< x2 >=
∫

p(x)x2dx = σ2 (4)

< x2N+1 >= 0 (5)

< x2N >=
(2N)!
2N

σ2N (6)

1

x is a 
Gaussian 
Variable
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< xixj >= σ2
i δij (1)

yk =
∑

i

αkixi (2)

< ykyl > =
∑

i

∑

j

αkiαlj < xixj > (3)

=
∑

i

αkiαliσ
2
i ≡ Ckl (4)

< y2N+1
k >= 0 (5)

< y2N
k >=

(2N)!
2N

[Ckk](2N) (6)

1

The sum of 
random 

variables is also 
a Gaussian 
variable



Density Fluctuations
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ρ("x) = ρ0[1 +
∫

d3kA("k) exp(i"k · "x)] (1)

< A("k)A("k′) >= P (k) (2)

ρs("x) =
∫

d3ρ("x)W (|"x− "x′) (3)

W (r) = exp[−r2/(2r2
0)] (4)

ρs("x) =
∫

d3kA("k)W (k) exp(i"k · "x)] (5)

W (k) = exp(−k2r2
0/2) (6)

T (n̂) =
∑

lm

almYlm(n̂) (7)

< almal′m′ >= cl (8)

Ts(n̂) =
∫

d2n′T (n̂)W (|n̂− n̂′|) (9)

Ts(n̂) =
∑

lm

almwlYlm(n̂) (10)

1



Legendre Polynomials

First null near 
2/l radians

P20

C(cos θ) =
∫

d2n

4π

d2n′

4π
T (n̂)T (n̂′)δ(n̂ · n̂′ − cos θ) (11)

=
∫

d2n

4π

d2n′

4π

∑

lm

∑

l′m′

almal′m′Ylm(n̂)Yl′m′(n̂′)δ(n̂ · n̂′ − cos θ) (12)

=
∫

d2n

4π

d2n′

4π

∑

l

cl
2l + 1

4π
Pl(n̂ · n′)δ(n̂ · n̂′ − cos θ) (13)

=
∑

l

cl
2l + 1

4π
Pl(cos γ) (14)

∑

m

Ylm(n̂)Ylm(n̂′) =
2l + 1

4π
Pl(n̂ · n̂′) (15)

θ ∼ 180o

l
(16)

2
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Temperature Fluctuations



The statistical properties 
of temperature and 

density fluctuations are 
characterized ENTIRELY 
by the amplitude of the 

power spectrum



Fluctuations from SLS
∑

m

Ylm(n̂)Ylm(n̂′) =
2l + 1

4π
Pl(n̂ · n̂′) (29)

θ ∼ 180o

l
(30)

T (n̂(η0 − ηLS)) =
∫

d3kT ($k, ηLS) exp(i$k · n̂(η0 − ηLS)) (31)

=
∫

d3kT ($k, ηLS)
∑

lm

jl[k(η0 − ηLS)]Ylm(n̂)Y ∗
lm(k̂) (32)

T (n̂(η0 − ηLS)) =
∑

lm

almYlm(n̂) (33)

alm = 4π

∫
k2dkTlm(k)jl[k(η0 − ηLS))] (34)
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jl(x) = 0 x << l (1)

jl(x) = sin(x)/x x >> l (2)

ρ("x) = ρ0[1 +
∫

d3kA("k) exp(i"k · "x)] (3)

< A("k)A("k′) >= P (k) (4)

ρs("x) =
∫

d3ρ("x)W (|"x− "x′) (5)

W (r) = exp[−r2/(2r2
0)] (6)

ρs("x) =
∫

d3kA("k)W (k) exp(i"k · "x)] (7)

W (k) = exp(−k2r2
0/2) (8)

T (n̂) =
∑

lm

almYlm(n̂) (9)

< almal′m′ >= cl (10)

Ts(n̂) =
∫

d2n′T (n̂)W (|n̂− n̂′|) (11)

Ts(n̂) =
∑

lm

almwlYlm(n̂) (12)

1

l =20



Problem

In the next lecture, we will show that for adiabatic fluctuations in a matter dominated
universe,

T (r, ηLS) = −Φ(r)
3

(21)

Assume a scale invariant spectrum for Φ:

< Φlm(k)Φ∗
lm(k′) >= Ak−3δl′m′

lm δ(k − k′) (22)

and compute the angular power spectrum.

3



Solution
alm =

1
3

∫
k2dkΦlm(k)jl(k(η0 − ηLS) (23)

cl = < almalm > (24)

=
1
9

∫
k2dk(k′)2dk′ < Φlm(k)Φlm(k′) > jl(k(η0 − ηLS)jl(k′(η0 − ηLS) (25)

=
A

9

∫
dk

k
j2
l (kη0 − ηLS) (26)

∝ A

l(l + 1)
(27)

4



Lecture 2 Evolution of 
Fluctuations

cl =
∫

k2dkP (k)Θ2
l (k) (28)

5

Initial Conditions
Evolution



How do we compute CMB 
angular power spectrum?

Download CMBFAST or CAMB from the web. 
These fast computer programs evaluate the 
CMB angular power spectrum and the matter 
power spectrum for different sets of initial 
conditions

Solve coupled linear gravity-Boltzmann equation 
numerically (see Dodelson’s textbook)

Use tight coupling approximation to estimate 
the angular power spectrum (Hu & Sugiyama)
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Φ(!x, tinitial) =
∫

d3k exp(i!k · !x)Φ(!k, tinitial) (1)

∇2Φ = 4πGρa2∆ (2)

∆(!k) =
k2a

3/2ΩmH2
0

Φ(!k) (3)

∆tot = ∆γ + ∆baryon + ∆ν + ∆DM (4)

Si =
ni

nγ
(5)

1

Adiabatic Initial Conditions:  S(x,t) = S
Isocurvature Initial Conditions              = 0
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Φ(!x, tinitial) =
∫

d3k exp(i!k · !x)Φ(!k, tinitial) (1)

∇2Φ = 4πGρa2∆ (2)

∆(!k) =
k2a

3/2ΩmH2
0

Φ(!k) (3)

∆tot = ∆γ + ∆baryon + ∆ν + ∆DM (4)

Si =
ni

nγ
(5)

1

Density and Potential 
Fluctuations are Gaussian 

Random Variables

Initial Conditions



ADIABATIC DENSITY 
FLUCTUATIONS



ISOCURVATURE ENTROPY 
FLUCTUATIONS



Thermal History of Universe

z
104 103

radiation

matter
NEUTRAL

IONIZED
ρ



Decoupling Happens Fast
cl =

∫
k2dkP (k)Θ2

l (k) (28)

γ + H < − > e− + p (29)

nγ(E > 13.6eV )/n−e ∼ 1010 exp(−13.6eV/Tγ) (30)

5

The ionized fraction rapidly drops from 1 to 
0.001 between z=1200 and z = 1000

Text

At z > 1200, photons are tightly coupled to electrons.
At z < 1000, photons stream freely with minimal 

interactions with matter



Evolution of Photon 
Fluctuations

Tight coupling regime: fluctuations oscillate as 
acoustic waves

Silk damping regime (1200 < z < 1000): photons 
diffuse out of fluctuations

Free streaming



Tight Coupling

cl =
∫

k2dkP (k)Θ2
l (k) (28)

γ + H < − > e− + p (29)

nγ(E > 13.6eV )/n−e ∼ 1010 exp(−13.6eV/Tγ) (30)

Θ̈ + c2
sk

2Θ = F (Φ) (31)

Θ = A0 cos(krs) + B0 sin(krs) (32)

rs =
∫

cs(η)dη (33)

c2
s =

p

ρ
=

1/3ργ

ργ + (4/3)ρbaryon
(34)

5



Velocity
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Θ̇0 + kΘ1 = 0 (1)

Θ1 = csA sin(krs) (2)

v̇b = neσT R(vb −Θ1) (3)

jl(x) = 0 x << l (4)

jl(x) = sin(x)/x x >> l (5)

ρ(#x) = ρ0[1 +
∫

d3kA(#k) exp(i#k · #x)] (6)

< A(#k)A(#k′) >= P (k) (7)

ρs(#x) =
∫

d3ρ(#x)W (|#x− #x′) (8)

W (r) = exp[−r2/(2r2
0)] (9)

ρs(#x) =
∫

d3kA(#k)W (k) exp(i#k · #x)] (10)

W (k) = exp(−k2r2
0/2) (11)

T (n̂) =
∑

lm

almYlm(n̂) (12)

1



Silk Damping

Photons diffusing out of 
density fluctuations damp the 

fluctuations
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Θ0,Θ1 ∼ exp(−k2/k2
D) (1)

k−2
D #

∫
dη

neσT a
(2)

Θ̇0 + kΘ1 = 0 (3)

Θ1 = csA sin(krs) (4)

v̇b = neσT R(vb −Θ1) (5)

jl(x) = 0 x << l (6)

jl(x) = sin(x)/x x >> l (7)

ρ($x) = ρ0[1 +
∫

d3kA($k) exp(i$k · $x)] (8)

< A($k)A($k′) >= P (k) (9)

ρs($x) =
∫

d3ρ($x)W (|$x− $x′) (10)

W (r) = exp[−r2/(2r2
0)] (11)

ρs($x) =
∫

d3kA($k)W (k) exp(i$k · $x)] (12)

W (k) = exp(−k2r2
0/2) (13)

1



Propagation
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T (k, ηD) =
[
−4

3
+ cos(kr∗s)

]
exp(−k2/k2

D)Φ(k) + icsΦ(k) sin(kr∗s) exp(−k2/k2
D) (1)

alm =
{

Φlm(k)
[
−4

3
+ cos(kr∗s)

]
exp(−k2/k2

D) (2)

+icsΦlmi(k) sin(kr∗s) exp(−k2/k2
D)

}
jl(k(η0 − ηLS)) (3)

cl =
∫

P (k)

{[
−4

3
+ cos(kr∗s)

]2

exp(−2k2/k2
D) + c2

s sin2(kr∗s)

}
j2
l (k(η0 − ηLS)) (4)

kpeakrs = nπ (5)

lpeak = kpeakη0 = πη0/rs " 200 (6)

Θ0,Θ1 ∼ exp(−k2/k2
D) (7)

k−2
D "

∫
dη

neσT a
(8)

Θ̇0 + kΘ1 = 0 (9)

Θ1 = csA sin(krs) (10)

v̇b = neσT R(vb −Θ1) (11)

jl(x) = 0 x << l (12)

1



Approximate Angular 
Power Spectrum



ISW Term
In a flat matter dominated universe, 
the gravitational potential is constant

Early ISW: matter radiation equality is 
at z~2000.  At z ~500-1000, radiation 
still contributes 12-25% of the total 
energy density.  Radiation doesn’t 
cluster so it suppresses the growth of 
fluctuations

Late ISW: once the universe becomes 
dark energy dominated, then the 
gravitational potential decays

Brief Article

The Author

January 18, 2006

δT = 2
∫

Φ̇dt (1)

T (k, ηD) =
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3
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]
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∫
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3
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Determining Basic 
Parameters

Baryon Density
Ωbh2 = 0.015,0.017..0.031

also measured through 
D/H



Determining Basic 
Parameters

Matter Density
Ωmh2 = 0.16,..,0.33

Text

Effect of forcing 
term in equation



Determining Basic 
Parameters

Angular Diameter Distance

w = -1.8,..,-0.2

When combined with measurement of 
matter density constrains data to a line 

in Ωm-w space



Reionization

Suppression of small 
scale fluctuations

Generation of 
additional large 
scale fluctuations

Degenerate with 
spectral tilt (in 
temperature 
spectrum)

Suppression
exp(-2τ)



FOREGROUND 
CORRECTED MAP



Current Status

Silk Damping



Problem

Compute the location of the peaks in the 
angular power spectrum in a isocurvature 
model


