Likelihood Analysis (A Theorist looks at Measurements)

David Spergel

Statistics of Signal

$$
\begin{gathered}
T\left(\hat{n}_{i}\right)=\sum_{l m} a_{l m} Y_{l m}\left(\hat{n}_{i}\right) \\
<a_{l m} a_{l^{\prime} m^{\prime}}^{*}>=c_{l} \delta_{l}^{l]} \delta_{m}^{m^{\prime}} \\
S_{i j} \equiv=<T\left(\hat{n}_{i}\right) T\left(\hat{n}_{j}\right)> \\
=\sum_{l m} \sum_{l^{\prime} m^{\prime}}<a_{l m} a_{l^{\prime} m^{\prime}}>Y_{l m}\left(\hat{n}_{i}\right) Y_{l m}\left(\hat{n}_{j}\right) \\
=\sum_{l} c_{l} \sum_{m} Y_{l m}\left(\hat{n}_{i}\right) Y_{l m}^{*}\left(\hat{n}_{j}\right) \\
=\sum_{l} c_{l} \frac{(2 l+1)}{4 \pi} P_{l}\left(\hat{n}_{i} \cdot n_{j}\right) \\
p(\vec{T})=\frac{d \vec{T}}{\sqrt{(2 \pi)^{n_{p i x}} \operatorname{det} \mathbf{S}}} \exp \left[-\frac{1}{2}(\vec{T})^{T} \mathbf{S}^{-1} \vec{T}\right]
\end{gathered}
$$

Spherical Harmonic Basis

$$
\begin{gathered}
\mathbf{Y}=Y_{l m}\left(\hat{n}_{j}\right) \\
n_{\text {pix }} \times n_{\text {multipoles }} \\
\mathbf{Y S Y}^{*}=\left(\begin{array}{ccc}
c_{0} & 0 & 0 \\
0 & \cdot & 0 \\
0 & 0 & c_{l}
\end{array}\right) \\
\operatorname{det} \mathbf{S}=\sum_{l}(2 l+1) c_{l} \\
p(\vec{T})=\Pi_{l m} \frac{\exp \left[-\frac{1}{2} \frac{a_{l m} a_{l m}^{*}}{c_{l}}\right]}{\sqrt{2 \pi c_{l}}}
\end{gathered}
$$

Beams

$$
\begin{gathered}
t_{s}(\hat{n})=\int d^{2} n T\left(\hat{n}^{\prime}\right) W\left(\hat{n}-\hat{n}^{\prime}\right) \\
t_{s}(\hat{n})=\sum_{l m} a_{l m} w_{l} Y_{l m}\left(\hat{n}_{i}\right) \\
S_{i j}=\sum_{l} c_{l} w_{l}^{2} \frac{(2 l+1)}{4 \pi} P_{l}\left(\hat{n}_{i} \cdot n_{j}\right)
\end{gathered}
$$

FIG. 1.- Jupiter maps of the A and B side focal planes (Bennett et al. 2003c) in the reference frame of the observatory. The contori levels are at 0.9. $0.6,0.3$, surface deformations.

Noise: Combining Two Gaussian Fields

$$
\begin{gathered}
\vec{t}=\vec{t}_{s}+\vec{n} \\
<n_{i} n_{j}>=N_{i j} \\
<n_{i} n_{j}>=\sigma_{i}^{2} \delta_{i j} \\
p\left(n_{i} \mid N_{i j}\right)=p\left(\vec{t} \mid \vec{t}_{s}, \mathbf{N}\right)=\frac{d \vec{n}}{\sqrt{(2 \pi)^{n_{p i x}} \operatorname{det} \mathbf{N}}} \exp \left[-\frac{1}{2}(\vec{n})^{T} \mathbf{N}^{-1}(\vec{n})\right] \\
p\left(\vec{t} \mid c_{l}\right)= \\
=\int\left(\vec{t} \mid \overrightarrow{t_{s}}, \mathbf{N}\right) p\left(\vec{t}_{s} \mid c_{l}\right) \\
\int \frac{d \vec{t}_{s}}{\sqrt{(2 \pi)^{n_{p i x}} \operatorname{det} \mathbf{S}}} \exp \left[-\frac{1}{2}\left(\overrightarrow{t_{s}}\right)^{T} \mathbf{S}^{-1} \vec{t}_{s}\right] \\
=\frac{1}{\sqrt{(2 \pi)^{n_{p i x}} \operatorname{det} \mathbf{N}}} \exp \left[-\frac{1}{2}\left(\overrightarrow{t_{s}}-\vec{t}\right)^{T} \mathbf{N}^{-1}\left(\overrightarrow{t_{s}}-\vec{t}\right)\right] \\
\sqrt{(2 \pi)^{n_{p i x}} \operatorname{det}(\mathbf{S}+\mathbf{N})} \\
\operatorname{dexp}\left[-\frac{1}{2}(\vec{t})^{T}(\mathbf{S}+\mathbf{N})^{-1} \vec{t}\right]
\end{gathered}
$$

CMB Map Making

$$
\begin{gathered}
y_{i}=M_{i j} t_{j}^{s}+n_{j} \\
<n_{j} n_{j^{\prime}}>=\mathcal{N}\left(t_{j}-t_{j^{\prime}}\right) \\
\mathcal{L}\left(t_{j}^{s} \mid y_{i}\right) \propto \exp \left[-\frac{1}{2}\left(y_{i}-M_{i j} t_{j}^{s}\right)^{T} \mathcal{N}^{-1}\left(y_{i}-M_{i j} t_{j}^{s}\right)\right] \\
\frac{\partial \ln \mathcal{L}}{\partial t^{s}}=0 \\
\left(\mathbf{M} \mathcal{N}^{-1} \mathbf{M}\right) \overrightarrow{t_{s}}=\mathbf{M}^{T} \vec{y}
\end{gathered}
$$

Pixel Noise Matrix

$$
\begin{gathered}
\mathbf{N}^{-1}=\frac{\partial^{2} \ln \mathcal{L}}{\partial\left(t^{s}\right)^{2}}=\left(\mathbf{M} \mathcal{N}^{-1} \mathbf{M}\right) \\
\mathbf{N}^{-1} \overrightarrow{t_{s}}=\mathbf{M}^{T} \vec{y} \\
p\left(\vec{t} \mid c_{l}\right)=\frac{d \vec{t}}{\sqrt{(2 \pi)^{n_{p i x}} \operatorname{det}(\mathbf{S}+\mathbf{N})}} \exp \left[-\frac{1}{2}(\vec{t})^{T}(\mathbf{S}+\mathbf{N})^{-1} \vec{t}\right] \\
=\frac{d \vec{t} \exp \left[-\frac{1}{2}(\vec{t})^{T} \mathbf{N}^{-\mathbf{1}}\left(\mathbf{N}^{-\mathbf{1}} \mathbf{S N}^{-\mathbf{1}}+\mathbf{I}\right)^{-\mathbf{1}} \mathbf{N}^{-\mathbf{1}} \overrightarrow{\mathbf{t}}\right]}{\sqrt{(2 \pi)^{n_{p i x}} \operatorname{det}\left(\mathbf{N}^{-\mathbf{1}}\left(\mathbf{N}^{-\mathbf{1}} \mathbf{S} \mathbf{N}^{-\mathbf{1}}+\mathbf{I}\right) \mathbf{N}^{\mathbf{1}}\right)}}
\end{gathered}
$$

Marginalization

$$
\begin{gathered}
y_{i}=M_{i j} t_{j}^{s}+n_{j}+g M_{i j} d_{j} \\
\mathcal{L}\left(t_{j}^{s} \mid y_{i}\right) \propto \int d g p(g) \exp \left[-\frac{1}{2}\left(y_{i}-M_{i j} t_{j}^{s}-g M_{i j}^{\prime} d_{j}\right)^{T} \mathcal{N}^{-1}\left(y_{i}-M_{i j} t_{j}^{s}-g M_{i j}^{\prime} d_{j}\right)\right] \\
\mathbf{N}^{-1}=\left(\mathbf{M} \mathbf{N}^{-1} \mathbf{M}\right)-\vec{q} \otimes \vec{q}
\end{gathered}
$$

Null Tests

- Essential to combine data in ways that yield zero expected signal so to test noise model
- year I - year 2
- channels at common frequency
- channels at different frequencies

Quadratic Estimator

$p\left(c_{l}^{\text {meas }} \mid c_{l}\right)=\Pi_{m} \int \frac{d a_{l m}}{(2 \pi)^{1 / 2} c_{l}} \exp \left(-\frac{a_{l m} a_{l m}^{*}}{2 c_{l}}\right) \delta\left(\sum_{m} a_{l m} a_{l m}^{*}-(2 l+1) c_{l}^{\text {meas }}\right)$
Exact Likelihood $p\left(c_{l}^{\text {meas }} \mid c_{l}\right)=\frac{\exp \left[-\frac{(2 l+1) c_{l}^{\text {meas }}}{2 c_{l}}\right]}{\left(2 \pi c_{l}\right)^{(2 l+1) / 2}}$
Approximate Likelihood

$$
\begin{gathered}
p\left(c_{l}^{\text {meas }} \mid c_{l}\right)=\frac{\exp \left[-\left(c_{l}-c_{l}^{\text {meas }}\right)^{2} 2 \sigma_{l}^{2}\right]}{\sqrt{2 \pi} \sigma_{l}} \\
\sigma_{c_{l}}^{2}=\frac{2}{2 l+1} c_{l}^{2} \\
\sigma_{c_{l}}^{2}=\frac{2}{2 l+1}\left(c_{l}+n_{0}^{2} w_{l}^{-2}\right)^{2}
\end{gathered}
$$

Maximum Likelihood and Fisher Matrix

$$
\mathcal{L}(T \mid S)=\frac{d \vec{t}}{\sqrt{(2 \pi)^{n_{p i x}} \operatorname{det}(\mathbf{S}+\mathbf{N})}} \exp \left[-\frac{1}{2}(\vec{t})^{T}(\mathbf{S}+\mathbf{N})^{-1} \vec{t}\right]
$$

,

Oh, Spergel,Hinshaw

$$
\frac{\partial \mathcal{L}}{\partial c_{l}}=0
$$

$$
\begin{gathered}
F_{l l^{\prime}}=\frac{2}{(2 l+1)\left(2 l^{\prime}+1\right)} \operatorname{tr}\left((S+N)^{-1} P_{l}(S+N)^{-1} P_{l^{\prime}}\right) \\
F_{l l} \simeq \frac{2}{(2 l+1) f_{s k y}^{2}}\left(c_{l}+n_{0}^{2} w_{l}^{-2}\right)^{2}
\end{gathered}
$$

Evaluating Models

$$
\begin{gathered}
p(\text { parameters } \mid \text { data })=p(\text { datal parameters }) P_{p r i o r}(\text { parameters }) \\
<A_{i}>=\int d \vec{A} A_{i} p(\vec{A} \mid \vec{T}) \\
\text { Relative Likelihood }
\end{gathered}
$$

p_{a} (data|MaximumLikelihoodparameters)
$\overline{p_{b} \text { (data|MaximumLikelihoodparameters) }}$

Markov Chains

- Need to evaluate the likelihood in a multi-dimensional parameter space
- General rule for integration: $\mathrm{N}<3$, use usual integration rules. $\mathrm{N}>3$, use Monte Carlo integration
- Markov Chain: start anywhere in the parameter space. Try taking a random step. If the step improves the likelihood, always take it. If it lowers the likelihood, select a random number, x, between 0 and I. If $x<\exp (-($ Lold - Lnew $))$, take the step. Otherwise,
 try a new step.
- The likelihood chain will eventually fairly sample the likelihood surface
- Run multiple chains long enough (100,000 steps) and compare the answers between the chains.

Cosmological Parameters

Fig. 12. - This figure shows the marginalized cumulative probability of w for several different combinations of data
sets. The dashed line shows the 95% confidence upper limit on w based on combining all of the data sets. The values
quoted in the captions are the 95% upper limit for various combinations of data sets. All combinations favor models
where the dark energy behaves like a cosmological constant $w=-1$.

Priors, Degeneracies

Summary

- Bayesian likelihoods are a powerful language for describing experiments, prior knowledge and calculating the statistical implications of the results.
- They codify our assumption and uncertainties.

Problem

WMAP measured a quadruple of $125(u K)^{2}$. (1) What is the probability of measuring a value this small in a theory with $c_{2}=1000$? (2) Compare the likelihood of two cosmological models a running spectral index model (which predicts $c_{2}=700$) and a scale invariant model (which predicts $c_{2}=1100$) (3) Compare the likelihoods for a Gaussian model

