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Lecture I

Why CENS and what is it?

AIM: To provide you with computational tools for nuclear
structure analyses. Useful both for data analysis (finalizing
articles, theses etc) as well as for writing proposals.

CENS is a graphical user interface (GUI) written in Python
which coordinates:

1 Many programs in Fortran 90/95 for computing effective
two-body interactions starting with free nucleon-nucleon
interactions (proton-neutron formalism). Parallel codes
available upon demand.

2 A shell-model code and a transition code. Source code in
C/C++ (portable to all systems) which allows you to address
systems up to 109 basic states. Parallel codes for larger
systems available upon demand.
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Why CENS and what is it?

Weblink with codes and lectures:(http:
//www.fys.uio.no/compphys/cp/software.html) plus
textbook to come (2009, with David Dean).

First Release of GUI (cens.tar.gz): september 2008.

Understand how nuclear spectra evolve from the underlying
nuclear interactions. Many types of effective interactions.

Critical assessment of the methods, pros and cons and their
limitations.
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Additions to come and further stuff

1 CENS-alpha version works for Linux/Unix and MAC. Windows
version to come soon (end spring 2009).

2 Add possibility to do Coupled-Cluster calculations (end 2009)

3 Include three-body interaction and effective interaction
diagrams (end 2009)

4 Add code to perform shell-model calculations with and
without three-body interactions (end 2009)
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An alternative way to use the GUI

1 For large calculations the GUI is not very practical.

2 Use the GUI to generate the input files to the effective
interaction calculation and the shell-model calculations.

3 Then run the shell-model or effective interaction codes on
your local computing node(s).

4 The GUI is then an easy to use tool to generate input
files.

5 This is the most likely usage of the GUI at the end.
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ORNL-OSLO Many-Body project, Code Developers

ORNL

David Dean, Gaute Hagen, Thomas Papenbrock

Oslo

Elise Bergli, Torgeir Engeland, Morten Hjorth-Jensen, Gustav Jansen, Maxim
Kartamychev, Simen Kvaal, Johannes Rekkedal
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Lecture Plan, see also the link http:

//www.fys.uio.no/compphys/cp/software.html

1 Monday: Nuclear interactions, models and calculational schemes, from
one-boson exchange models to effective field theories, file lecture1.pdf.

2 Tuesday: Methods for renormalizing the nucleon-nucleon interaction, Similarity
transformation methods and link to many-body methods, file lecture2.pdf.

3 Wednesday: Many-body methods, we start with Hartree-Fock theory,large scale
diagonalization methods (full configuration interaction or shell-model),
many-body perturbation theory and coupled-cluster theory, file lecture3.pdf

4 Thursday: Applications of many-body methods and further properties of the
different methods, file lecture4.pdf

5 Friday: From stable nuclei to weakly bound nuclei; choice of basis and
many-body approaches. Possibly also how to link ab initio methods with density
functional theory. File lecture5.pdf.
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CENS, with everything installed

Load down the cens.tar.gz package
and read the README file with
installation prescriptions

run as cens

need python 2.4 (now python2.5),
numpy and Pmw, Tkinter and
gnuplot packages

Linux: sudo apt-get install
< name − of − package >

C/C++ and Fortran 95 compilers
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Nuclear Many-Body Methods

1 Shell-model and No-core shell-model calculations; Large-scale
diagonalization.

2 Perturbative many-body methods.

3 Coupled cluster theory

4 Extention to weakly bound systems. Complex scaling and
complex shell model, Gamow shell model.

5 DFT and how to link it with ab initio methods

6 Density matrix renormalization group.

7 Variational, Diffusion and Path integral Monte Carlo methods.

8 Green’s function theory, Unitary operator method....
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

From Yukawa to Lattice QCD and Effective Field Theory

1930’s

Chadwick (1932) discovers the neutron and Heisenberg (1932) proposes the first
Phenomenology (Isospin). Yukawa (1935) and his Meson Hypothesis

1940’s

Discovery of the pion in cosmic ray (1947) and in the Berkeley Cyclotron Lab (1948).
Nobelprize awarded to Yukawa (1949). Rabi (1948) measures quadrupole moment of
the deuteron.

1950’s

Taketani, Nakamura, Sasaki (1951): 3 ranges. One-Pion-Exchange (OPE): o.k.
Multi-pion exchanges: Problems! Taketani, Machida, Onuma (1952); ”Pion Theories”
Brueckner, Watson (1953).

CENS: A Computational Environment for Nuclear Structure Lecture set I: NN Forces



Intro
Lecture I

Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

From Yukawa to Lattice QCD and Effective Field Theory

1960’s

Many pions = multi-pion resonances: σ(600), ρ(770), ω(782)
etc.One-Boson-Exchange Model. Refined Meson Theories

1970’s

Sophisticated models for two-pion exchange: Paris Potential (Lacombe et al.,
Phys. Rev. C 21, 861 (1980)) Bonn potential (Machleidt et al., Phys. Rep. 149, 1
(1987))

1980’s

Quark cluster models. Begin of effective field theory studies.

CENS: A Computational Environment for Nuclear Structure Lecture set I: NN Forces



Intro
Lecture I

Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

From Yukawa to Lattice QCD and Effective Field Theory

1990’s

1993-2001: High-precision NN potentials: Nijmegen I, II, ’93, Reid93 (Stoks et al.
1994), Argonne V18 (Wiringa et al, 1995), CD-Bonn (Machleidt et al. 1996 and 2001.
Advances in effective field theory: Weinberg (1990); Ordonez, Ray, van Kolck and
many more.

3rd Millenium

Another ”pion theory”; but now right: constrained by chiral symmetry. Three-body
and higher-body forces appear naturally at a given order of the chiral expansion.

2006

Nucleon-nucleon interaction from Lattice QCD, final confirmation of meson hypothesis
of Yukawa?
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

Lattice QCD, Ishii et al, PRL 2007
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

Features of the Nucleon-Nucleon (NN) Force

The aim is to give you an overview over central features of the
nucleon-nucleon interaction and how it is constructed, both
technical and theoretical approaches.

1 The existence of the deuteron with Jπ = 1+ indicates that the
force between protons and neutrons is attractive at least for
the 3S1 partial wave. Interference between Coulomb and
nuclear scattering for the proton-proton partial wave 1S0

shows that the NN force is attractive at least for the 1S0

partial wave.

2 It has a short range and strong intermediate attraction.

3 Spin dependent, scattering lengths for triplet and singlet
states are different,

4 Spin-orbit force. Observation of large polarizations of
scattered nucleons perpendicular to the plane of scattering.
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

Features of the Nucleon-Nucleon (NN) Force, continued

1 Hard core. The s-wave phase shift becomes negative at ≈ 250
MeV implying that the singlet S has a hard core with range
0.4− 0.5 fm.

2 Charge independence (almost). Two nucleons in a given
two-body state always (almost) experience the same force.
Modern interactions break charge and isospin symmetry
lightly. That means that the pp, neutron-neutron and pn parts
of the interaction will be different for the same quantum
numbers.

3 Non-central. There is a tensor force. First indications from
the quadrupole moment of the deuteron pointing to an
admixture in the ground state of both l = 2 (3D1) and l = 0
(3S1) orbital momenta.
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

Short Range Evidence

Comparison of the binding energies of 2H (deuteron), 3H (triton),
4He (alpha - particle) show that the nuclear force is of finite range
(1− 2 fm) and very strong within that range. For nuclei with
A > 4, the energy saturates: Volume and binding energies of nuclei
are proportional to the mass number A.
Nuclei are also bound. The average distance between nucleons in
nuclei is about 2 fm which must roughly correspond to the range
of the attractive part.
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

Charge Dependence

After correcting for the electromagnetic interaction, the forces
between nucleons (pp, nn, or np) in the same state are almost
the same.

”Almost the same”: Charge-independence is slightly broken.

Equality between the pp and nn forces: Charge symmetry.

Equality between pp/nn force and np force: Charge
independence.

Better notation: Isospin symmetry, invariance under rotations
in isospin
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

Charge Dependence, 1S0 Scattering Lengths

Charge-symmetry breaking (CSB), after electromagnetic effects
have been removed:

app = −17.3± 0.4fm
ann = −18.8± 0.5fm. Note however discrepancy from nd
breakup reactions resulting in ann = −18.72± 0.13± 0.65fm
and π− + d → γ + 2n reactions giving
ann = −18.93± 0.27± 0.3fm.

Charge-independence breaking (CIB)

apn = −23.74± 0.02fm
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

Symmetries of the Nucleon-Nucleon (NN) Force

1 Translation invariance

2 Galilean invariance

3 Rotation invariance

4 Space reflection invariance

5 Time reversal invariance

6 Invariance under the interchange of particle 1 and 2

7 Almost isospin symmetry

A general two-body non-relativistic model under these symmetries
was given by Okubo and Marshak, Ann. Phys. (NY) 4, 166 (1958).
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

CENS options

1 Charge symmetry breaking (CSB): available for N3LO and
CD-Bonn interaractions. All Argonne models include CSB.

2 Isospin symmetry breaking (ISB): available for N3LO and
CD-Bonn interaractions. All Argonne models include ISB.

3 Coulomb: Argonne includes Coulomb by default. All other
interaction models can or cannot include the Coulomb
interaction.
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories
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V (r) =

{
Cc + Cσσ1 · σ2 + CT

(
1 +

3

mαr
+

3

(mαr)2

)
S12(r̂)

+CSL

(
1

mαr
+

1

(mαr)2

)
L · S

}
e−mαr

mαr

How do we derive such terms?
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

References for Various Phenomenological Interactions

Potentials which are based upon the standard non-relativistic
operator structure are called ”Phenomenological Potentials” Some
historically important examples are

Gammel-Thaler potential ( Phys. Rev. 107, 291, 1339 (1957)
and the · Hamada-Johnston potential, Nucl. Phys. 34, 382
(1962)), bot with a hard core. core.

Reid potential (Ann. Phys. (N.Y.) 50, 411 (1968)), soft core.

Argonne V14 potential (Wiringa et al., Phys. Rev. C 29, 1207
(1984)) with 14 operators and the Argonne V18 potential
(Wiringa et al., Phys. Rev. C 51, 38 (1995)), uses 18 operators

A good reference: R. Machleidt, Adv. Nucl. Phys 19, 189
(1989).
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

Effective Degrees of Freedom

Since quantum chromodynamics (QCD) is commonly accepted as
the theory of the strong interaction, the NN interaction V is
completely determined by the underlying quark-quark dynamics in
QCD. However, due to the non–perturbative character of QCD at
low energies, one is still far from quantitative understanding of the
NN interaction from the QCD point of view. Although there is no
unique prescription for how to construct a free NN interaction, a
description of the NN interaction in terms of various meson
exchanges is presently the most quantitative representation of the
NN interaction in the energy regime of low and medium energy
nuclear physics, viz energies below 1 GeV.

CENS: A Computational Environment for Nuclear Structure Lecture set I: NN Forces



Intro
Lecture I

Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

Effective Degrees of Freedom, History

1 From 1950 till approximately 2000: One-Boson-Exchange
(OBE) models dominate

2 Now: models based on chiral perturbation theory.
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

Dramatis Personae

Baryons Mass (MeV) Mesons Mass (MeV)

p, n 938.926 π 138.03
Λ 1116.0 η 548.8
Σ 1197.3 σ ≈ 550.0
∆ 1232.0 ρ 770

ω 782.6
δ 983.0
K 495.8
K ? 895.0
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

Lagrangians

To describe the interaction between the various baryons and
mesons of the previous table we choose the following
phenomenological lagrangians for spin 1/2 baryons

Lps = gpsΨγ5Ψφ(ps),

Ls = g sΨΨφ(s),

and

Lv = g v ΨγµΨφ(v)
µ + g tΨσµνΨ

(
∂µφ

(v)
ν − ∂νφ(v)

µ

)
,

for pseudoscalar (ps), scalar (s) and vector (v) coupling,
respectively. The factors g v and g t are the vector and tensor
coupling constants, respectively.
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

Lagrangians, contn.

Similarly the factor g s is the phenomenological coupling coefficient
for scalar mesons while gps is the corresponding coupling constant
for pseudoscalar meson exchanges. These coupling constants may
be constrained by e.g. the nucleon-nucleon scattering data. In the
above equations, we have defined Ψ to be the baryon field for spin
1/2 baryons, while φ(ps), φ(s) and φ(v) are the corresponding meson
fields for pseudoscalar, scalar and vector mesons, respectively.
Note that the above equations are for isoscalar mesons, however,
for isovector mesons, the fields φ trivially modify to τφ with τ the
familar isospinor Pauli matrices.
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

Spinors for Protons and Neutrons

For spin 1/2 baryons, the fields Ψ are expanded in terms of the
Dirac spinors (positive energy solution shown here with uu = 1)

u(kσ) =

√
E (k) + m

2m

 χ

σk
E(k)+mχ

 ,

with χ the familiar Pauli spinor and E (k) =
√

m2 + |k|2. The
positive energy part of the field Ψ reads

Ψ(x) =
1

(2π)3/2

∑
kσ

u(kσ)e−ikxakσ,

with a being a fermion annihilation operator.
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

The Classical Expression

Expanding the free Dirac spinors in terms of 1/m (m is here the
mass of the relevant baryon) results, to lowest order, in the familiar
non-relativistic expressions for baryon-baryon potentials. The
configuration space version of the interaction can be approximated
as

V (r) =

{
C 0

C + C 1
C + Cσσ1 · σ2 + CT

(
1 +

3

mαr
+

3

(mαr)2

)
S12(r̂)

+CSL

(
1

mαr
+

1

(mαr)2

)
L · S

}
e−mαr

mαr
,

where mα is the mass of the relevant meson and S12 is the familiar
tensor term.
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

OBE for Scalar Mesons

Employing the above lagrangians, it is then possible to construct a
one-boson-exchange potential model. Typically, a contribution
V OBE

s arising from the exchange of a scalar meson between two
spin 1/2 baryons with equal masses is given by

〈
p′1p′2

∣∣V OBE
s |p1p2〉 = g 2

s

u(p′1)u(p′2)u(p1)u(p2)

(p′1 + p′2 − p1 − p2)2 −m2
s

,

where ms is the mass of the exchanged scalar meson. What does it
look like in coordinate space and what about pion exchange and
the spin-orbit force?
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

OBE for Pion Exchange

We derive now the non-relativistic one-pion exchange interaction.
Here p1, p′1, p2, p′2 and k = p1 − p′1 denote four-momenta. The
vertices are given by the pseudovector Lagrangian

Lpv =
fπ

mπ
ψγ5γµψ∂

µφπ.

From the Feynman diagram rules we can write the two-body
interaction as

V pv =
f 2
π

m2
π

u(p′1)γ5γµ(p1 − p′1)µu(p1)u(p′2)γ5γν(p′2 − p2)νu(p2)

(p1 − p′1)2 −m2
π

.
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

OBE for Pion Exchange

The factors p1 − p′1 = p′2 − p2 are both the four-momentum of the
exchanged meson and come from the derivative of the meson field
in the interaction Lagrangian. The Dirac spinors obey

γµpµu(p) = mu(p)

u(p)γµpµ = mu(p).

Using these relations, together with {γ5, γµ} = 0, we find

u(p′1)γ5γµ(p1 − p′1)µu(p1) = mu(p′1)γ5u(p1) + u(p′1)γµp′µ1 γ5u(p1)

= 2mu(p′1)γ5u(p1)

and
u(p′2)γ5γµ(p′2 − p2)µ = −2mu(p′2)γ5u(p1).
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

OBE for Pion Exchange

We get

V pv = − f 2
π

m2
π

4m2 u(p′1)γ5u(p1)u(p′2)γ5u(p2)

(p1 − p′1)2 −m2
π

.

By inserting expressions for the Dirac spinors, we find

u(p′1)γ5u(p1) =

√
(E ′1 + m)(E1 + m)

4m2

(
χ† − σ1·p1

E ′
1 +mχ

†
)( 0 1

1 0

)
×
(

χ
σ1·p1

E1+mχ

)
=

√
(E ′1 + m)(E1 + m)

4m2

(
σ1 · p1

E1 + m
− σ1 · p′1

E ′1 + m

)
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

OBE for Pion Exchange

Similarly

u(p′2)γ5u(p1) =

√
(E ′2 + m)(E2 + m)

4m2

(
σ2 · p2

E2 + m
− σ2 · p′2

E ′2 + m

)
.

In the CM system we have p2 = −p1, p′2 = −p′1 and so E2 = E1,
E ′2 = E ′1. We can then write down the relativistic contribution to
the NN potential in the CM system:

V pv = − f 2
π

m2
π

4m2 1

(p1 − p′1)2 −m2
π

(E1 + m)(E ′1 + m)

4m2

×
(
σ1 · p1

E1 + m
− σ1 · p′1

E ′1 + m

)(
σ2 · p1

E1 + m
− σ2 · p′1

E ′1 + m

)
.

CENS: A Computational Environment for Nuclear Structure Lecture set I: NN Forces



Intro
Lecture I

Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

OBE for Pion Exchange

In the non-relativistic limit we have to lowest order

E1 =
√

p2
1 + m2 ≈ m ≈ E ′1

and then (p1 − p′1)2 = −k2, so we get for the contribution to the
NN potential

V pv = − f 2
π

m2
π

4m2 1

k2 + m2

2m · 2m

4m2

σ1

2m
· (p1 − p′1)

σ2

2m
· (p1 − p′1)

= − f 2
π

m2
π

(σ1 · k)(σ2 · k)

k2 + m2
π

.

We have omitted exchange terms and isospin τ 1 · τ 2.
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

OBE for Pion Exchange, from k-space to r -space

We have

V pv (k) = − f 2
π

m2
π

(σ1 · k)(σ2 · k)

k2 + m2
π

τ 1 · τ 2.

In coordinate space we have

V pv (r) =

∫
d3k

(2π)3
e ikrV pv (k)

resulting in

V pv (r) =
f 2
π

m2
π

τ 1 · τ 2σ1 · ∇σ2 · ∇
∫

d3k

(2π)3
e ikr 1

k2 + m2
π

.

We obtain

V pv (r) =
f 2
π

m2
π

τ 1 · τ 2σ1 · ∇σ2 · ∇
e−mπr

r
.

CENS: A Computational Environment for Nuclear Structure Lecture set I: NN Forces



Intro
Lecture I

Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

OBE for Pion Exchange, really the last Step (I promise)

Carrying out the differentation of

V pv (r) =
f 2
π

m2
π

τ 1 · τ 2σ1 · ∇σ2 · ∇
e−mπr

r
.

we arrive at the famous one-pion exchange potential with central
and tensor parts

V (r) =
f 2
π

m2
π

τ 1·τ 2

{
σ1 · σ2 + CT

(
1 +

3

mαr
+

3

(mαr)2

)
S12(r̂)

}
e−mπr

mπr
.

For the full potential add the exchange part + isospin dependence
as well.
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Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

Other Mesons: Collecting Terms, σ

When we perform similar non-relativistic expansions for scalar and
vector mesons we obtain for the σ meson

V σ = g 2
σNN

1

k2 + m2
σ

(
−1 +

q2

2M2
N

− k2

8M2
N

− LS

2M2
N

)
.

We note an attractive central force and spin-orbit force. This term
has an intermediate range. We have defined 1/2(p1 + p′1) = q.
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Other Mesons: Collecting Terms, ω

We obtain for the ω meson

V ω = g 2
ωNN

1

k2 + m2
ω

(
1− 3

LS

2M2
N

)
.

We note a repulsive central force and attractive spin-orbit force.
This term has short range.
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Other Mesons: Collecting Terms, ρ

Finally for the ρ meson

V ρ = g 2
ρNN

k2

k2 + m2
ρ

(
−2σ1σ2 + S12(k̂)

)
τ1τ2.

We note a tensor force with sign opposite to that of the pion. This
term has short range.
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CENS options

1 You can compute a pure one-pion exchange interaction,
option OPEP

2 Or you can just study the role of the LS interaction

3 Or just the tensor force.

All these options are derived using the parameterizations of the
Argonne V 8 interaction model.
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Brief summary from Monday’s lecture

1 Can use a one-boson exchange picture to construct a nucleon-nucleon
interaction a la QED

2 Non-relativistic approximation yields amomgst other things a spin-orbit force
which is musch stronger than in atoms.

3 At large intermediate distances pion exchange dominates while pion resonances
(other mesons) dominate at intermediate and short range

4 Potentials are parameterized to fit selected two-nucleon data, binding energies
and scattering phase shifts.

5 Nowaydays, chiral perturbation theory gives an effective theory that allows a
systematic expansion in terms of contrallable parameters. Good basis for
many-body physics
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Mathematical Intermezzo, two-body Schrödinger in
k-space

The Schrödinger equation in abstract vector representation is

(T + V ) |ψn〉 = En|ψn〉 (1)

Here T is the kinetic energy operator and V is the potential operator.
The eigenstates form a complete orthonormal set according to

1 =
∑

n

|ψn〉〈ψn|, 〈ψn|ψn′〉 = δn,n′
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Mathematical Intermezzo, two-body Schrödinger in
k-space

The most commonly used representations of equation 1 are the
coordinate and the momentum space representations. They define the
completeness relations

1 =

∫
dr |r〉〈r|, 〈r|r′〉 = δ(r − r′) (2)

1 =

∫
dk |k〉〈k|, 〈k|k′〉 = δ(k− k′) (3)

Here the basis states in both r- and k-space are dirac-delta function
normalized. From this it follows that the plane-wave states are given by,

〈r|k〉 =

(
1

2π

)3/2

exp (ik · r) (4)

which is a transformation function defining the mapping from the

abstract |k〉 to the abstract |r〉 space.
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Mathematical Intermezzo, two-body Schrödinger in
k-space

That the r-space basis states are delta-function normalized follows from

δ(r − r′) = 〈r|r′〉 = 〈r|1|r′〉 =

∫
dk 〈r|k〉〈k|r′〉 =

(
1

2π

)3 ∫
dke ik(r−r′)

(5)
and the same for the momentum space basis states,

δ(k− k′) = 〈k|k′〉 = 〈k|1|k′〉 =

∫
dr 〈k|r〉〈r|k′〉 =

(
1

2π

)3 ∫
dre ir(k−k′)

(6)
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Mathematical Intermezzo, two-body Schrödinger in
k-space

Projecting equation 1 on momentum states the momentum space
Schrödinger equation is obtained,

~2

2µ
k2ψn(k) +

∫
dk′ V (k, k′)ψn(k′) = Enψn(k) (7)

Here the notation ψn(k) = 〈k|ψn〉 and 〈k |V |k′〉 = V (k, k′) has been
introduced. The potential in momentum space is given by a double
Fourier-transform of the potential in coordinate space, i.e.

V (k, k′) =

(
1

2π

)3 ∫
dr

∫
dr′ e−ikr V (r, r′)e ik′r′ (8)
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Mathematical Intermezzo, two-body Schrödinger in
k-space

Here it is assumed that the potential interaction does not contain any

spin dependence. Instead of a differential equation in coordinate space,

the Schrödinger equation becomes an integral equation in momentum

space. This has many tractable features. Firstly, most realistic

nucleon-nucleon interactions derived from field-theory are given explicitly

in momentum space. Secondly, the boundary conditions imposed on the

differential equation in coordinate space are automatically built into the

integral equation. And last, but not least, integral equations are easy to

numerically implement, and convergence is obtained by just increasing

the number of integration points. Instead of solving the

three-dimensional integral equation given in equation (7), an infinite set

of 1-dimensional equations can be obtained via a partial wave expansion.
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Mathematical Intermezzo, two-body Schrödinger in
k-space

The wave function ψn(k) can be expanded in a complete set of spherical
harmonics, i.e.

ψn(k) =
∑
lm

ψnlm(k)Ylm(k̂), ψnlm(k) =

∫
dk̂ Y ∗lm(k̂)ψn(k). (9)

By inserting equation 9 in equation 7, and projecting from the left
Ylm(k̂), the three-dimensional Schrödinger equation (7) is reduced to an
infinite set of 1-dimensional angular momentum coupled integral
equations,(

~2

2µ
k2 − Enlm

)
ψnlm(k) = −

∑
l′m′

∫ ∞
0

dk ′k ′
2
Vlm,l′m′(k, k ′)ψnl′m′(k ′)

(10)
where the angular momentum projected potential takes the form,

Vlm,l′m′(k , k ′) =

∫
dk̂

∫
dk̂ ′ Y ∗lm(k̂)V (k, k′)Yl′m′(k̂ ′) (11)

here dk̂ = dθ sin θ dϕ.CENS: A Computational Environment for Nuclear Structure Lecture set I: NN Forces
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Mathematical Intermezzo, two-body Schrödinger in
k-space

Often the potential is given in position space, so it is convenient to
establish the connection between Vlm,l′m′(k , k ′) and Vlm,l′m′(r , r ′).
Inserting position space completeness in equation (11) gives

Vlm,l′m′(k, k ′) =

∫
dr

∫
dr′

∫
dk̂

∫
dk̂ ′ Y ∗lm(k̂)〈k|r〉〈r|V |r′〉〈r′|k′〉Ylm(k̂ ′)

=

∫
dr

∫
dr′

{ ∫
dk̂Y ∗lm(k̂)〈k|r〉

}
×〈r|V |r′〉

{∫
dk̂ ′ Ylm(k̂ ′)〈r′|k′〉

}
(12)
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Mathematical Intermezzo, two-body Schrödinger in
k-space

Since the plane waves depend only on the absolute values of position and
momentum, |k|, |r|, and the angle between them, θkr , they may be
expanded in terms of bipolar harmonics of zero rank, i.e.

e ik·r = 4π
∞∑
l=0

i l jl(kr)
(

Yl(k̂) · Yl(r̂)
)

=
∞∑
l=0

(2l + 1)i l jl(kr)Pl(cos θkr )

(13)
where the addition theorem for spherical harmonics has been used in
order to write the expansion in terms of Legendre polynomials. The
spherical Bessel functions, jl(z), are given in terms of Bessel functions of
the first kind with half integer orders,

jl(z) =

√
π

2z
Jl+1/2(z).
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Mathematical Intermezzo, two-body Schrödinger in
k-space

Inserting the plane-wave expansion into the brackets of equation (12)
yields, ∫

dk̂Y ∗lm(k̂)〈k|r〉 =

(
1

2π

)3/2

4πi−l jl(kr)Y ∗lm(r̂),∫
dk̂ ′ Ylm(k̂ ′)〈r′|k′〉 =

(
1

2π

)3/2

4πi l
′
jl′(k ′r ′)Yl′m′(r̂).
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Mathematical Intermezzo, two-body Schrödinger in
k-space

The connection between the momentum- and position space angular
momentum projected potentials are then given,

Vlm,l′m′(k , k ′) =
2

π
i l

′−l

∫ ∞
0

dr r 2

∫ ∞
0

dr ′ r ′
2
jl(kr)Vlm,l′m′(r , r ′)jl′(k ′r ′)

(14)
which is known as a double Fourier-Bessel transform. The position space
angular momentum projected potential is given by

Vlm,l′m′(r , r ′) =

∫
dr̂

∫
dr̂ ′ Y ∗lm(r̂)V (r, r′)Yl′m′(r̂ ′). (15)
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Mathematical Intermezzo, two-body Schrödinger in
k-space

No assumptions of locality/non-locality and deformation of the
interaction has so far been made, and the result in equation (14) is
general. In position space the Schrödinger equation takes form of an
integro-differential equation in case of a non-local interaction, in
momentum space the Schrödinger equation is an ordinary integral
equation of the Fredholm type, see equation (10). This is a further
advantage of the momentum space approach as compared to the
standard position space approach. If we assume that the interaction is of
local character, i.e.

〈r|V |r′〉 = V (r)δ(r − r′) = V (r)
δ(r − r ′)

r 2
δ(cos θ − cos θ′)δ(ϕ− ϕ′),

then equation (15) reduces to

Vlm,l′m′(r , r ′) =
δ(r − r ′)

r 2

∫
dr̂ Y ∗lm(r̂)V (r)Yl′m′(r̂), (16)
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Mathematical Intermezzo, two-body Schrödinger in
k-space

and equation (14) reduces to

Vlm,l′m′(k , k ′) =
2

π
i l

′−l

∫ ∞
0

dr r 2 jl(kr)Vlm,l′m′(r)jl′(k ′r) (17)

where

Vlm,l′m′(r) =

∫
dr̂ Y ∗lm(r̂)V (r)Yl′m′(r̂), (18)
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Mathematical Intermezzo, two-body Schrödinger in
k-space

In the case that the interaction is central, V (r) = V (r), then

Vlm,l′m′(r) = V (r)

∫
dr̂ Y ∗lm(r̂)Yl′m′(r̂) = V (r)δl,l′δm,m′ , (19)

and

Vlm,l′m′(k, k ′) =
2

π

∫ ∞
0

drr 2jl(kr)V (r)jl′(k ′r)δl,l′δm,m′ = Vl(k, k ′)δl,l′δm,m′

(20)
where the momentum space representation of the interaction finally
reads,

Vl(k , k ′) =
2

π

∫ ∞
0

dr r 2 jl(kr)V (r)jl(k ′r). (21)
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Mathematical Intermezzo, two-body Schrödinger in
k-space

For a local and spherical symmetric potential, the coupled momentum
space Schrödinger equations given in equation (10) decouples in angular
momentum, giving

~2

2µ
k2ψnl(k) +

∫ ∞
0

dk ′k ′
2
Vl(k , k ′)ψnl(k ′) = Enlψnl(k) (22)

Where we have written ψnl(k) = ψnlm(k), since the equation becomes
independent of the projection m for spherical symmetric interactions.
The momentum space wave functions ψnl(k) defines a complete
orthogonal set of functions, which spans the space of functions with a
positive finite Euclidean norm (also called l2-norm),

√
〈ψn|ψn〉, which is

a Hilbert space. The corresponding normalized wave function in
coordinate space is given by the Fourier-Bessel transform

φnl(r) =

√
2

π

∫
dk k2jl(kr)ψnl(k) (23)
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Bethe-Salpeter Equation

In order to obtain the parameters which define an NN potential
derived from OBE or chiral perturbation theory models, the
Bethe-Salpeter equation is used as the starting point for most
calculations. This equation serves to define a two-particle
interaction T , meant to reproduce properties like low-energy
scattering data. The fully covariant Bethe-Salpeter equation reads
(suppressing spin and isospin) in an arbitrary frame〈
p′1p′2

∣∣ T |p1p2〉 =
〈
p′1p′2

∣∣V |p1p2〉

+
i

(2π)4

∫
d4k

〈
p′1p′2

∣∣V |P + k ,P − k〉

×S(1)(P + k)S(2)(P − k) 〈P + k ,P − k| T |p1p2〉 .
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Bethe-Salpeter Equation, contn.

Here we have defined P to be half the total four-momentum, i.e.
P = 1

2 (p1 + p2), and k to be the relative four-momentum. The
term S(i) is the fermion propagator, which for e.g. positive energy
spin 1/2 baryons reads

S(i)(p) = ( 6 pi −mi + iε)−1 ,

with the subscript i referring to baryon i .
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Bethe-Salpeter Equation, contn.

In principle V is supposed to represent all kinds of irreducible
two-particle interactions, though it is commonly approximated by
the lowest order two-particle diagram. With this prescription we
obtain the familiar ladder approach to the Bethe-Salpeter
equation, similar to the approach discussed in connection with the
G -matrix. The schematic structure of the ladder equation is
representative for both the scattering matrix and the reaction
matrix G . It is a four-dimensional integral equation, which is
rather tedious to solve numerically.
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Bethe-Salpeter Equation, contn.

It is therefore commonly replaced by a three-dimensional
quasi-potential equation, where the time components of the
four-momenta of the incoming and outgoing particles have been
fixed by some adequate choice. Still in an arbitrary frame we get〈

p′1p′2
∣∣T |p1p2〉 =

〈
p′1p′2

∣∣V |p1p2〉

+
1

(2π)3

∫
d3k

〈
p′1p′2

∣∣V |P + k,P− k〉

g(k, s) 〈P + k,P− k|T |p1p2〉 .

V is now the so-called “quasi-potential”, with fixed time
components of the in- and outgoing particle momenta. As such, it
is no longer an independent quantity. A much favored choice is to
fix p0

1 = p0
2 = 1

2

√
s, s = (p1 + p2)2.
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Bethe-Salpeter Equation, contn.

This prescription puts the two particles symmetrically off-shell, and
is used in connection with the Blankenbecler-Sugar equation. The
latter is one possibility of several three-dimensional reductions of
the Bethe-Salpeter equation. The quantity g is related to the
baryon propagators S(1)S(2) through

g(k, s) = −i

∫
dk0S(1)(k)S(2)(−k).

The Blankenbecler-Sugar choice for g is (assuming m1 = m2 and
spin 1/2 fermions)

g(k, s) =
m2

Ek

Λ+
(1)(k)Λ+

(2)(−k)

1
4 s − E 2

k + iε
.
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All NN potentials reproduce essentially the same set of low-energy
NN scattering data (Elab ≤ 350 MeV) and properties of the
deuteron. These are referred to as the “on-shell” properties of an
NN potential, since all potential models result in a roughly similar
on-shell scattering matrix T . The crucial point is then the differing
off-shell behavior of the NN potentials in nuclear structure studies.
The Bethe-Salpeter equation reads in the center-of-mass system
(omitting angular momentum, isospin, spin etc. assignments)

T (k, k′) = V (k, k′)+

∫ ∞
0

d3q

(2π)3
V (k,q)

M2
N

Eq

Λ+
(1)(q)Λ+

(2)(−q)

k2 − q2 + iε
T (q, k′),

where Eq =
√

M2
N + q2.
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Three-dimensional Reduction

For positive-energy spinors

T (k, k′) = V (k, k′) +

∫ ∞
0

d3q

(2π)3
V (k,q)

M2
N

Eq

1

k2 − q2 + iε
T (q, k′).

Using

T̂ (k, k′) =

√
MN

Ek ′
T (k, k′)

√
MN

Ek
,

and

V̂ (k, k′) =

√
MN

Ek ′
V (k, k′)

√
MN

Ek
,

gives

T̂ (k, k′) = V̂ (k, k′) +

∫ ∞
0

d3q

(2π)3
V̂ (k,q)

1

k2 − q2 + iε
T̂ (q, k′).
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First Solution Step

In terms of the relative and center-of-mass momenta k and K, the
potential in momentum space is related to the nonlocal operator
V (r, r′) by〈

k′K′
∣∣V |kK〉 =

∫
drdr′e−ık

′r′V (r′, r)eıkrδ(K,K′).

We will assume that the interaction is spherically symmetric. Can
separate the radial part of the wave function from its angular
dependence. The wave function of the relative motion is described
in terms of plane waves as

eıkr = 〈r| k〉 = 4π
∑
lm

ıl jl(kr)Y ∗lm(k̂)Ylm(̂r),

where jl is a spherical Bessel function and Ylm the spherical
harmonic.
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Decomposing the NN Force

This partial wave basis is useful for defining the operator for the
nucleon-nucleon interaction, which is symmetric with respect to
rotations, parity and isospin transformations. These symmetries
imply that the interaction is diagonal with respect to the quantum
numbers of total angular momentum J, spin S and isospin T .
Using the above plane wave expansion, and coupling to final J, S
and T we get〈

k′
∣∣V |k〉 = (4π)2

∑
STll ′mJ

ıl+l ′Y ∗lm(k̂)Yl ′m′(k̂′)

×C l ′SJ
m′MSMC lSJ

mMSM

〈
k ′l ′STJM

∣∣V |klSTJM〉 ,
where we have defined〈
k ′l ′STJM

∣∣V |klSTJM〉 =

∫
jl ′(k ′r ′)

〈
l ′STJM

∣∣V (r ′, r) |lSTJM〉 jl(kr)r ′
2
dr ′r 2dr .
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The general structure of the T -matrix is

Tα
ll ′(kk ′Kω) = V α

ll ′(kk ′)

+
2

π

∑
l ′′mMS

∫ ∞
0

dq(C l ′′SJ
mMSM)2 Y ∗l ′′m(q̂)Yl ′′m(q̂)V α

ll ′′(kq)Tα
l ′′l ′(qk ′Kω)

ω − H0
,

The shorthand notation

Tα
ll ′(kk ′Kω) = 〈kKlLJ ST |T (ω)

∣∣k ′Kl ′LJ ST
〉
,

denotes the T -matrix with momenta k and k ′ and orbital momenta
l and l ′ of the relative motion, and K is the corresponding
momentum of the center-of-mass motion. Further, L, J , S and T
are the orbital momentum of the center-of-mass motion, the total
angular momentum, spin and isospin, respectively.
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Using the orthogonality properties of the Clebsch-Gordan
coefficients and the spherical harmonics, we obtain the well-known
one-dimensional angle independent integral equation

Tα
ll ′(kk ′Kω) = V α

ll ′(kk ′) +
2

π

∑
l ′′

∫ ∞
0

dqq2 V α
ll ′′(kq)Tα

l ′′l ′(qk ′Kω)

ω − H0
.

Inserting the denominators for the Blankenbecler-Sugar of the full
Bethe-Salpeter equation we arrive at

T̂α
ll ′(kk ′K ) = V̂ α

ll ′(kk ′)+
2

π

∑
l ′′

∫ ∞
0

dqq2V̂ α
ll ′′(kq)

1

k2 − q2 + iε
T̂α

l ′′l ′(qk ′K ).
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Note that the OBE models, via the solution of the Bethe-Salpeter
equation contain only a selected class of diagrams. However, there
are also non-iterative diagrams which contribute to the nuclear
force.
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CENS options

1 You can choose to omit or include particular partial waves
under the options knob of the renormalization part. The
variables refer to the minimum and maximum J in the relative
coordinates.

2 Note that the Argonne model is parameterized with J ≤ 4.

3 Data are scanty above J > 5 and the other interaction models
give therefore only theoretical predictions.

4 For the no-core, vlowk, v-krg and v-nrg options, beyond J > 6
the Hamiltonian is given by kinetic energy only.
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CENS image
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Numerical Solution, Simplifications

For scattering states, the energy is positive, E > 0. The
Lippman-Schwinger equation, which is the non-relativistic version
of the Bethe-Salpeter equation discussed above, is an integral
equation where we have to deal with the amplitude R(k , k ′)
(reaction matrix, which is the real part of the full complex
T -matrix discussed in the previous section) defined through the
integral equation

Rl(k, k ′) = Vl(k , k ′) +
2

π
P
∫ ∞

0
dqq2Vl(k , q)

1

E − q2/m
Rl(q, k ′).

The phaseshift codes are at
http://www.fys.uio.no/compphys/cp/software.html
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Numerical Solution, further Simplifications

The total kinetic energy of the two incoming particles in the
center-of-mass system is

E =
k2

0

m
.

The symbol P indicates that Cauchy’s principal-value prescription
is used in order to avoid the singularity arising from the zero of the
denominator.
The matrix Rl(k , k ′) relates to the the phase shifts through its
diagonal elements as

Rl(k0, k0) = − tanδl
mk0

.
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Recipe I

From now on we will drop the subscript l in all equations. In order
to solve the Lippman-Schwinger equation in momentum space, we
need first to write a function which sets up the mesh points. We
need to do that since we are going to approximate an integral
through ∫ b

a
f (x)dx ≈

N∑
i=1

wi f (xi ),

where we have fixed N lattice points through the corresponding
weights wi and points xi . Typically obtained via methods like
Gaussian quadrature, see my course on computational physics (all
material in english) http:
//www.uio.no/studier/emner/matnat/fys/FYS3150/h08/
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Recipe II

If you use Gauss-Legendre the points are determined for the
interval xi ∈ [−1, 1] You map these points over to the limits in
your integral. You can then use the following mapping

ki = const × tan
{π

4
(1 + xi )

}
,

and
ωi = const

π

4

wi

cos2
(
π
4 (1 + xi )

) .
If you choose units fm−1 for k, set const = 1. If you choose to
work with MeV, set const ∼ 200 (~c = 197 MeVfm).
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Recipe III

The principal value integral is rather tricky to evaluate numerically,
mainly since computers have limited precision. We will here use a
subtraction trick often used when dealing with singular integrals in
numerical calculations. We introduce first the calculus relation∫ ∞

−∞

dk

k − k0
= 0.

It means that the curve 1/(k − k0) has equal and opposite areas
on both sides of the singular point k0. If we break the integral into
one over positive k and one over negative k , a change of variable
k → −k allows us to rewrite the last equation as∫ ∞

0

dk

k2 − k2
0

= 0.
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Recipe IV

We can then express a principal values integral as

P
∫ ∞

0

f (k)dk

k2 − k2
0

=

∫ ∞
0

(f (k)− f (k0))dk

k2 − k2
0

,

where the right-hand side is no longer singular at k = k0, it is
proportional to the derivative df /dk, and can be evaluated
numerically as any other integral.
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Recipe V

We can then use this trick to obtain

R(k , k ′) = V (k, k ′)+
2

π

∫ ∞
0

dq
q2V (k , q)R(q, k ′)− k2

0 V (k, k0)R(k0, k
′)

(k2
0 − q2)/m

.

This is the equation to solve numerically in order to calculate the
phase shifts. We are interested in obtaining R(k0, k0).
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Recipe VI

How do we proceed?
Using the mesh points kj and the weights ωj , we reach

R(k , k ′) = V (k, k ′)+
2

π

N∑
j=1

ωjk
2
j V (k , kj)R(kj , k

′)

(k2
0 − k2

j )/m
− 2

π
k2

0 V (k , k0)R(k0, k
′)

N∑
n=1

ωn

(k2
0 − k2

n)/m
.
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Recipe VII

This equation contains now the unknowns R(ki , kj) (with
dimension N × N) and R(k0, k0).
We can turn it into an equation with dimension (N + 1)× (N + 1)
with a mesh which contains the original mesh points kj for
j = 1,N and the point which corresponds to the energy k0.
Consider the latter as the ’observable’ point. The mesh points
become then kj for j = 1, n and kN+1 = k0.
With these new mesh points we define the matrix

Ai ,j = δi ,j − V (ki , kj)uj ,
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Recipe VIII

where δ is the Kronecker δ and

uj =
2

π

ωjk
2
j

(k2
0 − k2

j )/m
j = 1,N

and

uN+1 = − 2

π

N∑
j=1

k2
0ωj

(k2
0 − k2

j )/m
.
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Recipe IX

The first task is then to set up the matrix A for a given k0. This is
an (N + 1)× (N + 1) matrix. It can be convenient to have an outer
loop which runs over the chosen observable values for the energy
k2

0/m. Note that all mesh points kj for j = 1,N must be different
from k0. Note also that V (ki , kj) is an (N + 1)× (N + 1) matrix.
With the matrix A we can rewrite the problem as a matrix problem
of dimension (N + 1)× (N + 1). All matrices R, A and V have
this dimension and we get

Ai ,lRl ,j = Vi ,j ,

or just
AR = V .
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Recipe X

Since you already have defined A and V (these are stored as
(N + 1)× (N + 1) matrices) The final equation involves only the
unknown R. We obtain it by matrix inversion, i.e.,

R = A−1V .

Thus, to obtain R, you will need to set up the matrices A and V
and invert the matrix A. With the inverse A−1, perform a matrix
multiplication with V results in R.
With R you can then evaluate the phase shifts by noting that

R(kN+1, kN+1) = R(k0, k0) = − tanδ

mk0
,

where δ are the phase shifts.
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Lippman-Schwinger Equation, Repeated

To parameterize the nucleon-nucleon interaction we solve the Lippman-Scwhinger
equation

Tα
ll′ (kk ′K) = Vα

ll′ (kk ′) +
2

π

X
l′′

Z ∞
0

dqq2Vα
ll′′ (kq)

1

k2 − q2 + iε
Tα

l′′ l′ (qk ′K).

The shorthand notation

T (V̂ )αll′ (kk ′Kω) = 〈kKlLJ ST |T (ω)
˛̨
k ′Kl ′LJ ST

¸
,

denotes the T (V )-matrix with momenta k and k ′ and orbital momenta l and l ′ of the

relative motion, and K is the corresponding momentum of the center-of-mass motion.

Further, L, J , S and T are the orbital momentum of the center-of-mass motion, the

total angular momentum, spin and isospin, respectively.
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Numerical Solution, Repeated

For scattering states, the energy is positive, E > 0. The Lippman-Schwinger equation,
which is the non-relativistic version of the Bethe-Salpeter equation discussed above, is
an integral equation where we have to deal with the amplitude R(k, k ′) (reaction
matrix, which is the real part of the full complex T -matrix) defined through the
integral equation for one partial wave (no coupled-channels)

Rl (k, k
′) = Vl (k, k

′) +
2

π
P
Z ∞

0
dqq2Vl (k, q)

1

E − q2/m
Rl (q, k

′).

For negative energies (bound states) and intermediate states scattering states blocked

by occupied states below the Fermi level, this expressions leads to the G -matrix to be

discussed today.
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T -matrix and V

1S0

Matrix elements V (q0, k) for the 1S0

partial wave for the CD-Bonn (solid
line), Nijm-I (dashed), Nijm-II
(dash-dot), Argonne V18

(dash-triple-dot) and Reid93 (dotted)
potentials. The diagonal matrix
elements with k = q0 = 265 MeV/c
(equivalent to Tlab = 150 MeV) are
marked by a solid dot. The
corresponding matrix element of the full
scattering R-matrix is marked by the
star.
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T -matrix and V

3S1

Matrix elements for the 3S1 for the
CD-Bonn (solid line), Nijm-I (dashed),
Nijm-II (dash-dot), Argonne V18

(dash-triple-dot) and Reid93 (dotted)
potentials. The diagonal matrix
elements with k = q0 = 265 MeV/c
(equivalent to Tlab = 150 MeV) are
marked by a solid dot. The
corresponding matrix element of the full
scattering R-matrix is marked by the
star.

CENS: A Computational Environment for Nuclear Structure Lecture set I: NN Forces



Intro
Lecture I

Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

T -matrix and V

3S1–3D1

Matrix elements for 3S1–3D1 for the
CD-Bonn (solid line), Nijm-I (dashed),
Nijm-II (dash-dot), Argonne V18

(dash-triple-dot) and Reid93 (dotted)
potentials. The diagonal matrix
elements with k = q0 = 265 MeV/c
(equivalent to Tlab = 150 MeV) are
marked by a solid dot. The
corresponding matrix element of the full
scattering R-matrix is marked by the
star.
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T -matrix and V

3P1

Matrix elements for 3P1 for the
CD-Bonn (solid line), Nijm-I (dashed),
Nijm-II (dash-dot), Argonne V18

(dash-triple-dot) and Reid93 (dotted)
potentials.The diagonal matrix elements
with k = q0 = 265 MeV/c (equivalent
to Tlab = 150 MeV) are marked by a
solid dot. The corresponding matrix
element of the full scattering R-matrix
is marked by the star.
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Does it matter?

The behavior seen here has important consequences for
renormalizations in nuclear medium.
All interactions yield the same on-shell T -matrix, although V and
its off-shell character can be very different from interaction model
to interaction model. The off-shell part is not constrained by data.
Potentials with for example a weak tensor force (cancellation
between the π and ρ meson contributions) can lead to important
differences in for example nuclear binding energies.
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OBE vs Chiral Perturbation Theory

Historically, the experimental discovery of heavy mesons in the early 1960s gave
momentum to the one-boson-exchange (OBE) model. Prior to that it was pion
physics which dominated the picture. The weak point of this model, however, is the
scalar-isoscalar “sigma” or “epsilon” boson, for which the empirical evidence remains
controversial. Since this boson is associated with the correlated (or resonant)
exchange of two pions, a vast theoretical effort that occupied more than a decade
(1970-1980) was launched to derive the 2π-exchange contribution of the nuclear force,
which creates the intermediate range attraction.

The nuclear force problem appeared to be solved; however, with the discovery of

quantum chromo-dynamics (QCD), all “meson theories” had to be relegated to

models and the attempts to derive the nuclear force started all over again.
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OBE vs Chiral Perturbation Theory

The problem with a derivation from QCD is that this theory is non-perturbative in the

low-energy regime characteristic of nuclear physics, which makes direct solutions

impossible. Therefore, during the first round of new attempts, QCD-inspired quark

models became popular. These models were able to reproduce qualitatively some of

the gross features of the nuclear force. But were useless for nuclear structure. Also, on

a critical note, it has been pointed out that these quark-based approaches were

nothing but another set of models and, thus, did not represent any fundamental

progress. Equally well, one may then stay with the simpler and much more

quantitative meson models.
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Chiral Perturbation Theory

A major breakthrough occurred when the concept of an effective field theory (EFT)

was introduced and applied to low-energy QCD. As outlined by Weinberg in 1979 one

has to write down the most general Lagrangian consistent with the assumed symmetry

principles, particularly the (broken) chiral symmetry of QCD. At low energy, the

effective degrees of freedom are pions and nucleons rather than quarks and gluons;

heavy mesons and nucleon resonances are “integrated out”. So, in a certain sense we

are back to the 1950s, except that we are smarter by 40 years of experience: broken

chiral symmetry is a crucial constraint that generates and controls the dynamics and

establishes a clear connection with the underlying theory, QCD.
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Chiral Perturbation Theory

Chiral Perturbation Theory (CHPT) is the effective theory of QCD and, more
generally, of the Standard Model, which was formulated by Weinberg and developed in
to a systematic tool for analyzing low–energy QCD by Gasser and Leutwyler.
Consider the QCD Lagrangian in the two–flavor case of the light up and down quarks

LQCD = q̄ (iγµDµ −M)q −
1

4
G a
µνG

aµν ,

where Dµ = ∂µ − igsG a
µT a with T a, (with a = 1 . . . 8) are the SU(3)color Gell–Mann

matrices and q the quark fields. Further, G a
µν are the gluon field strength tensors, and

the quark mass matrix is given by M = diag(mu , md ).
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Chiral Perturbation Theory

The left– and right–handed quark fields are defined by qL,R = 1/2(1± γ5)q. The

chiral group G is a group of independent SU(2)flavor transformations of the left– and

right–handed quark fields, G = SU(2)L × SU(2)R. Expressing the quark part in the

QCD Lagrangian in terms of qL,R , it is easy to see that the covariant derivative term

is invariant with respect to global chiral rotations, while the quark mass term is not.

The running quark masses at the renormalization scale µ = 1 GeV are mu ∼ 5 MeV

and md ∼ 9 MeV. Given the fact that the masses of the up and down quarks are

much smaller than the typical hadron scale of the order of 1 GeV, chiral SU(2)L ×
SU(2)R symmetry can be considered as a rather accurate symmetry of QCD.
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Chiral Perturbation Theory

There is a strong evidence on both experimental and theoretical sides that chiral
symmetry of QCD is spontaneously broken down to its vector subgroup (isospin group
in the two–flavor case). Perhaps, the most striking evidence of the spontaneous
breaking of the axial generators is provided by the nonexistence of degenerate parity
doublets in the hadron spectrum and the presence of the triplet of unnaturally light
pseudoscalar mesons (pions). The latter are natural candidates for the corresponding
Nambu–Goldstone bosons which acquire a small nonzero mass due to the explicit
chiral symmetry breaking by the nonvanishing quark masses.
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Effective Field Theories and QCD

Two worlds

At high energies: weak, asymptotic freedom; perturbative
QCD.

At low energies (= nuclear physics): strong QCD,
non-perturbative; a totally different world.

The fact that the scenario at low- energy is so different from high-
energy suggests that the effective description of the low-energy
scenario should also be very different from high.
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Effective Field Theories and QCD

QCD in the u/d sector has approximate chiral symmetry but this
symmetry is broken in two ways:

Explicitly broken, because the u and d quark masses are not
exactly zero;

Spontaneously broken

SU(2)L × SU(2)R ≈ SU(2)V × SU(2)A → SU(2)V ,

that is in the QCD ground state, axial symmetry is broken,
while isospin symmetry is intact.

We obtain 3 Goldstone bosons: the pions!
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Chiral Perturbation Theory

The chiral effective Lagrangian is given by an infinite series of terms with increasing

number of derivatives and/or nucleon fields, with the dependence of each term on the

pion field prescribed by the rules of broken chiral symmetry. Applying this Lagrangian

to NN scattering generates an unlimited number of Feynman diagrams, which may

suggest again an untractable problem. However, Weinberg showed that a systematic

expansion of the nuclear amplitude exists in terms of (Q/Λχ)ν , where Q denotes a

momentum or pion mass, Λχ ≈ 1 GeV is the chiral symmetry breaking scale, and

ν ≥ 0. For a given order ν, the number of contributing terms is finite and calculable;

these terms are uniquely defined and the prediction at each order is

model-independent. By going to higher orders, the amplitude can be calculated to any

desired accuracy. The scheme just outlined has become known as chiral perturbation

theory (χPT).
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Effective Field Theories

Therefore, we want to describe the low-energy scenario of QCD by
an Effective Field Theory (EFT). The steps to take:

Write down the most general Lagrangian including all terms
consistent with the assumed symmetries, particularly,
spontaneously broken chiral symmetry.

Calculate Feynman diagrams. Note: There will be infinitely
many diagrams.

Find a scheme for assessing the importance of the various
diagrams, because we cannot calculate infinitely many
diagrams.
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Chiral Perturbation Theory

The starting point for the derivation of the NN interaction is an
effective chiral Lagrangian

L = LπN + Lππ + LNN ,

which is given by a series of terms of increasing chiral dimension,

LπN = L(1)
πN + L(2)

πN + L(3)
πN + . . . ,

Lππ = L(2)
ππ + . . . ,

LNN = L(0)
NN + L(2)

NN + L(4)
NN + . . . ,

where the superscript refers to the number of derivatives or pion
mass insertions (chiral dimension). Good review: Epelbaum,
Prog. Part. Nucl. Phys. 57, 654 (2006).
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Chiral Perturbation Theory

Common to apply the heavy baryon (HB) formulation of chiral
perturbation theory in which the relativistic Lagrangian is
subjected to an expansion in terms of powers of 1/MN (kind of a
nonrelativistic expansion), the lowest order of which is

L̂(1)
πN = N̄

(
iD0 −

gA

2
~σ · ~u

)
N

≈ N̄

[
i∂0 −

1

4f 2
π

τ · (π × ∂0π)− gA

2fπ
τ · (~σ · ~∇)π

]
N + . . .

For the parameters that occur in the leading order Lagrangian, we
apply MN = 938.919 MeV, mπ = 138.04 MeV, fπ = 92.4 MeV,
and gA = gπNN fπ/MN = 1.29, which is equivalent to
g 2
πNN/4π = 13.67.
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NN Interaction

The chiral NN force has the general form

V2N = Vπ + Vcont ,

where Vcont denotes the short–range terms represented by NN contact interactions
and Vπ corresponds to the long–range part associated with the pion–exchange
contributions Both Vπ and Vcont are determined within the low–momentum
expansion.

Notice that the nucleon kinetic energy contributes to L(2). The above terms

determine the nuclear potential up to N2LO (with the exception of the NN contact

terms at NLO) in the limit of exact isospin symmetry.
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NN Interaction

Consider now pion–exchange contributions to the potential

Vπ = V1π + V2π + V3π + . . . ,

where one–, two– and three–pion exchange (3PE) contributions V1π , V2π and V3π

can be written in the low–momentum expansion as

V1π = V
(0)
1π + V

(2)
1π + V

(3)
1π + V

(4)
1π + . . . ,

V2π = V
(2)
2π + V

(3)
2π + V

(4)
2π + . . . ,

V3π = V
(4)
3π + . . . .

Here, the superscripts denote the corresponding chiral order and the ellipses refer to

(Q/Λ)5– and higher order terms. Contributions due to the exchange of four– and

more pions are further suppressed: n–pion exchange diagrams start to contribute at

the order (Q/Λ)2n−2. Notice further that in addition to isopin–invariant contributions

there are isospin–breaking corrections.
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NN Interaction

The static 1PE potential at N3LO has the form

V
(0)
1π + V

(2)
1π + V

(3)
1π + V

(4)
1π = −

„
gA

2Fπ

«2

(1 + δ)2 τ 1 · τ 2
~σ1 · ~q ~σ2 · ~q
~q 2 + M2

π

.
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NN Interaction

The 2PE contributions are convenient to express as V2π in the form:

V2π = VC + τ 1 · τ 2 WC + [VS + τ 1 · τ 2 WS ] ~σ1 · ~σ2 + [VT + τ 1 · τ 2 WT ] ~σ1 · ~q ~σ2 · ~q

+ [VLS + τ 1 · τ 2 WLS ] i(~σ1 + ~σ2) · (~q × ~k)

+ [VσL + τ 1 · τ 2 WσL] ~σ1 · (~q × ~k)~σ2 · (~q × ~k) ,

where the superscripts C , S, T , LS and σL of the scalar functions VC , . . ., WσL refer

to central, spin–spin, tensor, spin–orbit and quadratic spin–orbit components,

respectively.
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Chiral Perturbation Theory

Q0

��� � � ��� �
	 �
�

Q2

��� � � ��� �
	 �
�

Q3

χPT

The most important irreducible
one- and two-pion exchange
contributions to the NN interaction
up to order Q3.

Vertices denoted by small dots are

from L̂(1)
πN .

Large dots refer to L̂(2)
πN, ct

CENS: A Computational Environment for Nuclear Structure Lecture set I: NN Forces



Intro
Lecture I

Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

2π-Exchange

xxx

yyy

zzz aaa

Leading ((Q
Λ )2), subleading ((Q

Λ )3) and

sub-subleading ((Q
Λ )4) contributions to

the chiral 2π–exchange potential. Solid
(dashed) lines correspond to nucleons
(pions). Solid dots, filled rectangles and
filled diamonds represent vertices with
∆i = 0, 1 and 2, respectively. Shaded
blob denotes the
next–to–next–to–leading order
contribution to the pion–nucleon
scattering amplitude.

CENS: A Computational Environment for Nuclear Structure Lecture set I: NN Forces



Intro
Lecture I

Developing Models for the NN force
How to construct an Interaction: Partial Wave Analysis
Additional material: From QCD to Effective Field Theories

Leading contributions 3π-Exchange
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Three-Nucleon Force at order ν = 3.

(a) (b) (c)
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3NF Interaction

The first non–vanishing 3NF contribution appears at order ν = 3, i.e. at N2LO. The
contribution from graph (a)

V
(3)
2π =

X
i 6=j 6=k

1

2

„
gA

2Fπ

«2 (~σi · ~qi )(~σj · ~qj )

(~qi
2 + M2

π)(~qj
2 + M2

π)
Fαβijk ταi τ

β
j ,

where ~qi ≡ ~pi
′ − ~pi ; ~pi (~pi

′) is the initial (final) momentum of the nucleon i and

Fαβijk = δαβ
»
−

4c1M2
π

F 2
π

+
2c3

F 2
π

~qi · ~qj

–
+
X
γ

c4

F 2
π

εαβγτγk ~σk · [~qi × ~qj ] .
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3NF Interaction

The contributions from the remaining graphs (b) and (c) take the form

V
(3)
1π, cont = −

X
i 6=j 6=k

gA

8F 2
π

D
~σj · ~qj

~qj
2 + M2

π

`
τ i · τ j

´
(~σi · ~qj ) , V

(3)
cont =

1

2

X
j 6=k

E (τ j · τ k ) ,

where D and E are the corresponding low-energy constants from the Lagrangian of

order ν = 1.
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NN and 3NF Interaction

Chiral order 2N force 3N force 4N force

ν = 0 V1π + Vcont − −
ν = 1 − − −
ν = 2 V1π + V2π + Vcont − −
ν = 3 V1π + V2π V2π + V1π, cont + Vcont −
ν = 4 V1π + V2π + V3π + Vcont work in progress work in progress
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Results with NN interaction to ν = 4
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Phase Shifts

np phase parameters below 300
MeV lab. energy for partial waves
with J ≤ 2. The solid line is the
result at N3LO.

The dotted and dashed lines are
the phase shifts at NLO and
NNLO, respectively.

The solid dots show the Nijmegen
multi-energy np phase shift analysis
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Results with NN interaction to ν = 4
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np phase parameters below 300
MeV lab. energy for partial waves
with J ≤ 2. The solid line is the
result at N3LO.

The dotted and dashed lines are
the phase shifts at NLO and
NNLO, respectively.

The solid dots show the Nijmegen
multi-energy np phase shift analysis
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