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What do we want to do?

@ An effective interaction for the shell model based on an NN or even NNN
nuclear force.

@ We need then to understand how to define model spaces for various nuclear
systems and their link to large-scale shell-model calculations

@ We need to renormalize the repulsive part of the NN force (maybe also NNN
force).

@ This leads to the first step: computation of the G-matrix, or no-core interaction
or Viow_k interactions.

@ The next step is the computation of a model space effective interaction and/or
operator. Such interactions are normally of two-body character. There are
calculations with three-body forces also, standard shell-model, no-core
shell-model , coupled-cluster and Green's function Monte Carlo for light nuclei.

@ Finally, applications to nuclear systems using the shell model, Green's function
methods, many-body perturbation theory, Coupled Cluster etc..

CENS: A Computational Environment for Nuclear Structure Lecture Set Il: Renormalization



Definitions
No-Core Shell-Model Calculations
Renormalizations Green’s function renormalization
Momentum-space truncations and effective interactions

Final Effective two-body Hamiltonians

This is what we typically want to do

Find the lowest (=~ 10-50) solution of the eigenvalue problem
H[Wn(A)) = (T + V) [Wn(A)) = En [Vin(A))
Derivation of a model-space effective Hamiltonian:
H=Hy+Hi, Hh=T+U, Hi=V—-U.
Model P—space and excluded Q-space:
n oo
P=> i) (il, Q=D | (Wil
i=1 i=n+1

and model space Hamiltonian

PHer P [Wm) = P (Flo + (Hi)err ) P Vim) = EnP [Wim)
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Model Space and Hamiltonians

D
P= Z |1Z1,> <¢l| >
i=1
and -
Q= D ) wil,
i=D+1

with D being the dimension of the model space, and PQ = 0, P2=P, Q>=Q and
P+ Q = I. The wave functions [1);) are eigenfunctions of the unperturbed

hamiltonian Hy = T + U (with eigenvalues ¢;), where T is the kinetic energy and U
an appropriately chosen one-body potential, normally that of the harmonic oscillator
(h.0.). The full hamiltonian is then rewritten as H = Hp + H; with Hi =V — U, V

being e.g. the nucleon-nucleon (NN) interaction

CENS: A Computational Environment for Nuclear Structure Lecture Set Il: Renormalization



No-Core Shell-Model Calculations

Renormalizations Green’s function renormalization
Momentum-space truncations and effective interactions
Final Effective two-body Hamiltonians

Wave Operator |

We define the projection of the exact wave function |W,) of a state a, i.e. the
solution to the full Schrédinger equation

H ‘wa> = Eq |\Ua> s

as P|V,) = ‘\I!Qf’) and a wave operator £ which transforms all the model states back
into the corresponding exact states as |V, ) = Q |lll(’\l/’> The latter statement is
however not trivial, it actually means that there is a one-to-one correspondence
between the d exact states and the model functions. We will now assume that the
wave operator 2 has an inverse. Use a similarity transformation of the hamiltonian

QIHQQ LW, = E.Q 71 W) .
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Wave Operator |l

Recall also that [Wo) = Q|WX), which means that Q=1 [W,) = |WM) insofar as the
inverse of Q exists. Let us define the transformed hamiltonian H = Q~1HSQ, which
can be rewritten in terms of the operators P and Q (P+ Q =) as

H=PHP + PHQ + QHP + QHQ.

The eigenvalues of H are the same as those of H, since a similarity transformation
does not affect the eigenvalues.

ju) = o).
with the operator @, one can show the so-called decoupling condition

QHP = 0.
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Wave Operator Il

The last equation is an important relation which states that the eigenfunction P |W)
is a pure model space eigenfunction. This implies that we can define an effective
model space hamiltonian

Hog = PHP = PQ1HQP,

or equivalently
HQP = QPH.g P,

which is the Bloch equation. This equation can be used to determine the wave

operator Q.
The wave operator is often expressed as

Q=1+x,

where x is known as the correlation operator.
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Wave Operator IV

The wave operator 2 can be ordered in terms of the number of interactions with the
perturbation Hj

Q=1+00 100 4

9

where Q(") means that we have n H; terms. Explicitly, the above equation reads

Q[Ya)

W)‘*‘Z' \H1|¢a ZI(\H1IJOIH1I%>

(ea —&i)(ea —&))

li) \Hl |¢B><¢B| Hi [$a)
Z o —€i)(€a — €8)

2 ooy

where ¢ are the unperturbed energies of the P-space
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Understanding excitations, model spaces and excluded
spaces

We always start with a 'vacuum'’ reference state, the Slater determinant for the
believed dominating configuration of the ground state. Here a simple case of eight
particles with single-particle wave functions ¢;(x;)

#1(x1)  d1(x2) ... P1(xs)

$a(x1)  Pa(x2) ... P2(xs)

®p = 1 gs(x1)  #3(x2) ... ¢3(xs)
NG

do(x1) @s(x2) ... os(xs)

If this is it, we are staying at the Hartree-Fock level. We can however allow for a linear
combination of excitations beyond the ground state, viz., we could assume that we
include 1p-1h and 2p-2h excitations

Vo, _op = (14 T1+ T2)P

T is a 1p-1h excitation while T is a 2p-2h excitation.

CENS: A Computational Environment for Nuclear Structure Lecture Set Il: Renormalization



Definitions
No-Core Shell-Model Calculations
Renormalizations Green’s function renormalization
Momentum-space truncations and effective interactions
Final Effective two-body Hamiltonians

Understanding excitations, model spaces and excluded
spaces

The single-particle wave functions of

$1(x1)  d1(x2) ... P1(xs)

d2(x1)  @2(x2) ...  ¢2(xs)

b= L | P3(x) d3lx2) ... ¢s(xe)
NG
da(x1) s(x) ... os(xs)

are normally chosen as the solutions of the so-called non-interacting part of the

Hamiltonian, Hp. A typical basis is provided by the harmonic oscillator problem.
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Excitations in Pictures

o 7 o rr

B A I O [ B

C N - LA

From Ty to T? From T, to T2

Ty a7 a T> o af a) aja;
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Excitations

2p — 2h Shell-Model Truncations
Ip—1h @ Truncated shell model with 2p — 2h
€4 = has Wy, op = (L + T1 + T2)®
o NP7 as 2p2h-(+1+ 2)%o
/( ( ( ( @ Energy contains then
€F
€ \ Expop =
NN
€1
(Oo(1+ T+ T H|(1+ T1+ T2)®o)
T2T, o Note that T2 T is not in truncated
shell model. Important.
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Simple Toy Model to illustrate basic principles

Choose a hamiltonian that depends linearly on a strength parameter z
H = Ho + zHh,

with 0 < z < 1, where the limits z = 0 and z = 1 represent the non-interacting
(unperturbed) and fully interacting system, respectively. The model is an eigenvalue
problem with only two available states, which we label P and Q. Below we will let
state P represent the model-space eigenvalue whereas state @ represents the
eigenvalue of the excluded space. The unperturbed solutions to this problem are

Ho®p = epPp

and
H0¢Q = EQ(DQ,

with ep < eq. We label the off-diagonal matrix elements X, while Xp = (®p| Hy |Pp)
and Xq = (Pg| H1 |Pq)-
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Simple Two-Level Model

The exact eigenvalue problem

ep + zXp zX
zX eq + zXq

yields
1
E(z) = > {ep + €@ + zXp + zXg £ (eq — €p + zXq — zXp)

422X2
Xy 14 5 (1
(EQ —€ep + ZXQ — ZXP)

A Rayleigh-Schrodinger like expansion for the lowest eigenstate

22X? + 23X?(Xq — Xp) - z*X%(Xq — Xp)? z4 X4

E =ep+2zXp+ _
€p —€q (er —€Q)? (er —€Q)? (er —€Q)?

Aoy

which can be viewed as an effective interaction for state P in which state Q is taken

into account to successive orders of the perturbation.
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Another look at the problem: Similarity Transformations

We have defined a transformation

QTHQQ W) = E,Q 71 |W,) .

T as

We rewrite this for later use, introducing Q = e
H = e_THeT,
and T is constructed so that QH’P = PH’Q = 0. The P-space effective Hamiltonian
is given by
H = PH'P,

and has d exact eigenvalues of H.
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Another look at the simple 2 x 2 Case, Jacobi Rotation

We have the simple model

ep + zXp zX
zX €Q + zXq

Rewrite for simplicity as a symmetric matrix H € R?*?

_ [Hu Hi
Hx1  Hxn|-®

The standard Jacobi rotation allows to find the eigenvalues via the orthogonal matrix

Q
Q:e"':|:c S:|

—S C

with ¢ = cosv and s = siny. We have then that H' = e~ 7 He is diagonal.
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Simple 2 x 2 Case, Jacobi Rotation first

To have non-zero nondiagonal matrix H’ we need to solve

(Ho2 — Hi1)es + H12(C2 — 52) =0,

and using c? — 52 = cos(2y) and cs = sin(2)/2 this is equivalent with
2H
tan(2y) = —r
Hii — Hx»
Solving the equation we have
1 1 2H1, km
= " ta A2 ) A e 21,01, 1
7T <H11—H22)+2 ()

where k7 /2 is added due to the periodicity of the tan function.
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Simple 2 x 2 Case, Jacobi Rotation first

Note that k = 0 gives a diagonal matrix on the form
; _[A O
Hk:O - |:0 Ao’ (2)
while k = 1 changes the diagonal elements

A2 0] 3)

H‘{(Zl = |:0 A1
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Simple 2 x 2 system, exercise

Exercise: Find the similarity transformed expression for Hy; for a simplepairing model
and compare it with the perturbative expansion till fifth order.

Use
—& —&
—g 2d—g

The effective interaction depends on the angles of the rotation matrix!

where ep = 0 and ¢4 = 2d.
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CENS options

@ Can compute a renormalized two-body interaction using a
no-core shell-model prescription

@ Can compute a renormalized two-body interaction using a
G-matrix prescription

© Can compute a renormalized two-body interaction using a
Vlowk prescription

@ Can compute a renormalized two-body interaction using a
renormalization group prescription in momentum space or in
oscillator space (not ideal for shell-model calculations)
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Effective Hamiltonian for Large Spaces, no-core
calculations

|(ab)JT,)

Similarity Transformation

@ Diagonalize

= | =9

pi+p 1 2 | =

712,” 2 4 Esz(rl2 + 72)
Q2

ZAM—af

@ Use similarity-transformation to

M < 2n-+ 1~ 200 obtain Vg for smaller space.

h<2n+Il~4-20 @ No energy dependence! HO basis.

h Hy =

Y

h M b +V(A —1R)—
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Translationally Invariant Hamiltonian

In deriving and effective interaction with CoM corrections, the
following expressions are helpful. The CoM momentum is

A
P = Z pi,
=1

and we have that

A
o 1
IR
i=1
meaning that
A s —
r_F
— 2m  2mA

CENS: A Computational Environment for Nuclear Structure
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Translationally Invariant Hamiltonian

In a similar fashion we can define the CoM coordinate

which yields

Y7 = [RR (-

i=1 i<j
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Translationally Invariant Hamiltonian

If we then introduce the harmonic oscillator one-body Hamiltonian

(B L e
H():Z %—Fimﬂr, 9

1=

with € the oscillator frequency, we can rewrite the latter as

P2 N mAQ2 R?
2mA 2

1 L o mQ2 S o\
+ o 2B B+ D (=)
i<j 1<J

Huo =
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Translationally Invariant Hamiltonian

Or we could write

H HCOM+2 A;

with

B2

mAQ?2 R2

HCOM —
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Translationally Invariant Hamiltonian

In shell model studies the translationally invariant one- and
two-body Hamiltonian reads for an A-nucleon system,

A B2 A

D; P
£~ 2m 2mA + Z v
i=1 i<j

where Vj; the nucleon-nucleon interaction, modified by including
the harmonic oscillator potential

A

1 i mQ? | - S S
2 oMU — o |+ L T =0,

i=1 i<j
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Translationally Invariant Hamiltonian

We can rewrite the Hamiltonian as

He — S o1 0272 S Vv mQ®

=2 g + 2|+ 2 |Vim g (=)
i=1 i<j
_HCOM'
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Translationally Invariant Hamiltonian

Shell-model calculations are carried out in a model space defined
by a projector P. The complementary space to the model space is
defined by the projector @ = 1 — P. Consequently, for the P-space
part of the shell-model Hamiltonian we get

» Q.
HP_ZP[ +z szz]P—i—ZP[ —";A(r,-—rj)z P

i<j eff

—PHcom P.
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Translationally Invariant Hamiltonian

The effective interaction appearing in the last equation is in
general an A-body interaction and if it is determined without any
approximations, the model-space Hamiltonian provides an identical
description of a subset of states as the full-space Hamiltonian. The
intrinsic properties of the many-body system still do not depend on
Q. From among the eigenstates of the Hamiltonian it is necessary
to choose only those corresponding to the same CoM energy. This
can be achieved by projecting the CoM eigenstates with energies
greater than %hQ upwards in the energy spectrum.
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The effective interaction should be determined from H®.
Calculation of the exact A-body effective interaction is, however,
as difficult as finding the full space solution. Usually, the effective
interaction is approximated by a two-body effective interaction
determined from a two-nucleon problem. The relevant two-nucleon
Hamiltonian is then

P1 +P2

mQ? 2\2
om A—r)

H3! = Hip+Vs' = r)— A — 5 (7

+ mQ?(P+73)+ V(A —
With this Hamiltonian we can then compute a starting-energy
independent effective interaction or G-matrix corresponding to a
two-nucleon model space defined by the projector P. This
equation is the starting point for a no-core shell-model interaction.
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First Step

Start with the two-body equation

L sz = N
HY = HR+ VS = ”12m”2+2 mQP(RAB)+ V(A7) — o (R=72)? .

Define A for the specific nucleus

@ Define a large space in terms of the h.o. shells
2n+ [ ~ 200 — 300

Diagonalize exactly the two-body problem.

Transform to a smaller space with 2n+ / ~ 4 — 20
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Convergence criteria

See Simen Kvaal: Harmonic oscillator eigenfunction expansions,
quantum dots, and effective interactions arxiv:0808.2145.
Accuracy of FCI calculations for quantum dots with harmonic
oscillator wave functions for many-body state: For an exact
eigenfunction which is k times differentiable we have

AE < CR kY

with 0 < e < 1 and C s a constant. Ryt is the shell-energy
2n+1+d/2.
Ground state has typically k = 1 yielding

AE ~ R™®,

with a =~ 1, which is a poor convergence.
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Two electrons QD, Johnson and Payne model, PRL 67,
1157 (1991)

| Relative error for N=2,1 = 2 Relative error for N=2,1 = 2

Relative error
Relative error
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Three electrons QD, Johnson and Payne model, PRL 67,
1157 (1991)

Relative error for N=

Relative error
Relative error
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Four electrons QD, Johnson and Payne model, PRL 67,
1157 (1991)

Relative error for N=4,1 =2

. . Relative error for N=4,\ =2
10 10
1 e
o
10 M=3, 554, U, o = ~6.2366|
107
e 107
&
10
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Five electrons QD, Johnson and Payne model, PRL 67,
1157 (1991)
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CENS options

@ You need to fix the the value of 2n 4+ | for the maximum size
of the huge two-particle space, typically 200-300

@ You need to choose the oscillator energy in MeV

© The no-core shell-model interaction depends on the number of
nucleons, derive one for each nucleus

@ You need to fix 2n + | for the model space.

© Only the triangular model space is available.
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27 LI S s s e p S s p e

] ——hQ=19 MeV
4 ——hQ=22 MeV
1 ——hQ=24 MeV
1 —— hQ=26 MeV
71 —=—hQ=28 MeV
——hQ=30 MeV
—— hQ=32 MeV

E [MeV]

4 6 8 10121416 182022242628 30323436

Nmax
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———— ] oxact
-7.9F 4 ——hQ=19 MeV
< ——hQ=22 MeV
> ) )
2 ¥4 ] ——hQ=24 MeV
m —o— hQ=26 MeV
w e+ ]
—— hQ=28 MeV
sof CD-Bonn 1 ——ho=30Mev
——hQ=32 MeV
-8A3 1 1 1 1 1 1 1 1 1 1 1

12 14 16 18 20 22 24 26 28 30 32 34 36

Nmax
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T T T T T T T T T T 019 Mev
o 1 ——ha=22 Mev
< ——hQ=24 MeV
o ——hQ=26 MeV
5 730 1 —=—hQ=28 MeV

——hQ=30 MeV

74r CD-Bonn

75 1 1 1 1 1 1 1 1 1 1 1

“12 14 16 18 20 22 24 26 28 30 32 34 36

—~

Nmax
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Decoupling Subspaces and the SVD, a new look at the
Lee-Suzuki Method

From Golub and Van Loan (Matrix Computations, chapters 8.6 and 12.4), Shavitt and
Redmon (J. Chem. Phys. 73, 5711 (1980)) and Suzuki (PTP 68, 246 (1982)).
Consider wfw = PwQwP, a positive semi-definite (i.e., non-negative definite)
operator, acting in the d-dimensional P space only. Since it is symmetric, we may
diagonalize it with real eigenvalues ,u% > u% > > u§ > 0 and corresponding
eigenvectors |ay), viz,

wiw lak) = ,u,% lak), Qlak)=0.

The eigenvectors |a) constitute an ONB for P-space. Observe that we have ordered
the eigenvalues in descending order, consistent with the interpretation of py as

singular values to come.
See Simen Kvaal, PRC 78, 044330 (2008) for algo.
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Decoupling Subspaces and the SVD

Let the dimension of Q-space be n, such that Q + P-space is d + n-dimensional. It
should be clear that in the case that n < d, i.e., the Q-space is smaller than the
P-space, at least one of the p, must be zero. This may of course happen if n > d as
well.
Let j be the number of zero eigenvalues Mf{, i.e.,
Hd = Hd—1 = = pd—j+1 =0, pg—; #0.

For each k < d — j define |vy) by

1 .

lvk) = —wlak)y, k<d-—j.
Kk

It is readily seen that P |vk) = 0, and that
(Vklok| =0, (vi|ve| = dk,e-

The vectors |vk) constitute a basis for the image of w. This basis is also orthonormal.
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Decoupling Subspaces and the SVD

We can then obtained the SVD of w in abstract form, viz,

d—j
w=">" e |vic) (e -
k=1
Recall that the SVD of a matrix loosely can be described as taking an ONB (here the
|ak)), stretching it with the singular values (here uy), and transforming into a new

orthonormal set of vectors (the |vk)).
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Similarity Transformations

We consider the unitary similarity transform of H given by

H =e THe,
and T is constructed so that QH’P = PH’Q = 0. The P-space effective Hamiltonian
is given by

H = PH'P

and has d exact eigenvalues of H.
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Similarity Transformations

We need to compute T = tanh™! X, with X = w — w’. This expression is defined
through its power series, viz,

2n+1

oo
tanh™!z Z
= 2n+1’

convergent for all |z| < 1. We make a simple observation: Since sinh(iy) = isiny and
cosh iy = cosy, we have tanhjy = itany, and therefore tanh~! ix = jtan—! x. This is
also readily seen from the power series of tan™

n 2n+1

o0
Z 2n+1
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Similarity Transformations

Notice that X is skew-symmetric (XT = —X) and that PXP = QXQ = 0. Using the
canonical form of w we have,

d

X=w—-wl =3 (k) (el = law) (i) -

k=1
Taking the square of X yields

X2 = =37 4 (i) (vl + lowe) (ol

k

and since Py = |ay) (a| and Qx = |vk) (vk| are projection operators, with P2 = Py,
Q,% = Qx, and P, Q, = 0, we obtain

XM= (1) 3" (Jvi) (vl + o) () -
k

Moreover,

X201 = N (1) ([ (el — o) (vi) -
K
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Similarity Transformations

Insertion into the power expansion for tanh~! X, we obtain

2n+1

tanh™1 X = (Ivk) (k] — o) (wl) -
;); 2 +1 k k k k

We now define
Mk = tan™ '
and by changing the order of the summation readily obtain

T =tanh ™' X = " (|vi) (ol — laue) (wil)
K

and note that TT = —T.
Observe how the 7, can be interpreted as angles, and that the singular values are

simply the tangent of these angles.
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Similarity Transformations

The goal here is to compute the exponential exp T, and for that we need all integer
powers of T, viz,
o0 oo
TI7 Tn
T ._ § — E
e = n 1+ nl "
n=0 n=1

By definition, T% = 1. Computing T2, then T2" and finally T2"t1 is completely
analoguous to the computation of the powers of X; it is the same mechanism but
“different px” in the summation over k. We simply state the result:

T2 = " (=1)" 07" (Jou) (ol + v (w)
K

T2 = 3 (=1)"2 (v ol + o) (vl -
P
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Similarity Transformations

The power expansion of exp T splits into a cosine part and a sine part:

e" =1+ (e — 1) (lowk) okl + ) (wil) + D s (Ivk) el + lowk) (wil)

k k
where for brevity we have defined
Sk :=sinmng, Ck := COSTM.
Thus, exp T is manifestly a multi-dimensional rotation in the basis of P + Q-space

given by |ak), |vk).
The unitarity of exp T is readily checked.
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G-matrix: Resummation of a Class of Diagrams

@ The NN (and also NNN) are strongly repulsive at short
distances. This will give large matrix elements for the shell
model.

@ Construct an interaction which renormalizes the short distance
part of the nucleon-nucleon force. Here we can use a
G-matrix appropriatey defined for a model space or a no-core
interaction.

@ For a G-matrix we sum the so-called ladder diagrams,
representing highly excited (short distances) two-body states.
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G-matrix: Resummation of a Class of Diagrams

@ Then we use this renormalized short-range interaction to
compute other processes, like core-polarization diagrams etc.

@ Note that strictly speaking we are solving a two-body
problem. However, for the deuteron (free particles) we can
solve Schrodinger’s equation exactly. For the many-body
problem we need to define a model space and can thus sum
only selected classes of physical processes.
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Effective Hamiltonian and Model Spaces

Two-Body Effective Hamiltonian for
Large Space

Need to renormalize short-range
behavior of V:

Q
h Gt = Vit Y Viimn————— Gl

W —€Em—¢€
mneQ m n

Y

h M b
@ Harmonic oscillator basis.

@ Note well energy w dependence!
M<2n+1~4—-20

@ NN interactions + Coulomb.
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Effective Hamiltonian and Model Spaces

Two-Body Effective Hamiltonian for
Large Space
@ With G we can in turn include
higher-order contributions via
h Many-body perturbation theory.

@ This is defined for a smaller space

h M b @ Need to test results as function of
smaller space in connection with
shell-model calculations.

M<2n+1~4—20

CENS: A Computational Environment for Nuclear Structure Lecture Set Il: Renormalization



Definitions
No-Core Shell-Model Calculations
Renormalizations Green’s function renormalization
Momentum-space truncations and effective interactions
Final Effective two-body Hamiltonians

Computational Procedure |

Gw)=V+ V" @ o ),

1
Gw)=V+VQ—— QG(w).
(@) T ora e
The former equation applies if the Pauli operator Q commutes with the unperturbed
hamiltonian Hp, whereas the latter is needed if [Hp, Q] # 0. Similarly, the correlated
wave function V is given as

_ Q
V) = ) + == G4,
or 1
V) = G
V) = [¥) + Q=6 Q6 1)
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Computational Procedure Il

Defining the wave operators
Q=1+ &Gl,
€1

and o
Q=1+ szz,
€

we can rewrite the above G-matrices as
G1 = Vi€,

and
Gy = VL.
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Computational Procedure Ill

Using these relations, we rewrite Gj as

G = GlszT(Qlflf%Gl)+(957176§%) G

il €2

= Gj+6] (9—02)61“2*61—6 Qi
€1

we obtain the identity

@&

G1:G2T+G2T(e
il

= Q2) Gl+Q (V1 VQ)Ql.

The second term on the rhs. is called the propagator-correction term; it vanishes if Gy
and Gy have the same propagators. The third term is often referred to as the

potential-correction term, and it disappears if G; and G, have the same potentials.
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Computational Procedure IV

Define the correlated wave function ¥,
G |¢'a> =V ‘\Ua> 5

where 1, is the unperturbed wave function. Using the definition of the correlated
wave function we have

V2 = iha) + —2 Gl = o) + Q Eoviv).

Note that we have assumed that the Pauli operator @ and the unperturbed
Hamiltonian Hy commute. If we are able to obtain the correlated wave function, we
get the G-matrix by

(Yal G |9p) = (Pa| V [W) .
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Computational Procedure V

For computations, there is a handy matrix relation

1.1
P———P

1 11
oA~ A PA-IP A

QAQ A

Write
G = G + AG,

where Gr is the free G-matrix (easy to compute) defined as

1

() =

GF=V+V TGF.

The term AG is a correction term defined entirely within the model space P (finite
but big) and given by e.g.,

1. 1 1
AG =GP pl
e Plel+e1Gre )P e

GF7

and can be solved by matrix inversion.
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Computational Procedure VI

The equation for the free matrix Gf is solved in momentum space and we obtain
(kKILTST| G |k’KI’LjS’T> .

Transformations from the relative and center-of-mass motion system to the lab system

will be discussed below.

To obtain a G-matrix in a h.o. basis, we need the transformation

AN /
F )
(nNILTST| Ge |[n'N'I'L' 7S'T)

with n and N the principal quantum numbers of the relative and center-of-mass
motion, respectively.

[nINLTST) = / k2 K2 dkdKRp (v 2ak) Ry (v/1/2aK) |KIKLTST) .
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Computational Procedure VII

The most commonly employed sp basis is the harmonic oscillator, which in turn means
that a two-particle wave function with total angular momentum J and isospin T can
be expressed as

[(nalaja) (Mo ljs) JT) = > S F x (ablASy)
\/(1+512 ASJ nNIL
N L I X
_1)\MT—-L-S
x(—1) A s J 7

X (nINL|nalanplp) [nINLTST) ,

where the term (nINL|nslsnplp) is the familiar Moshinsky bracket.
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Computational Procedure VIII

The term (ab|LSJ) is a shorthand for the LS — jj transformation coefficient,

U I sa  Ja
(ab|ASJ) = jajpAS S b sp b
A S J
1+S+T
Here we use X = v/2x + 1. The factor F is defined as F = % if 55 = sp.
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Computational Procedure IX

The G-matrix in terms of harmonic oscillator wave functions reads

((ab)JTl G |(Cd)JT> = Z (1 — (_1)/+S+T)

AN/ SS' T n/n’%N’L V(1 +02p)(1 + bcd)
X (ab|ASJ)(cd| X' S’ Jy (nINL|nalanplpX) {n'I' NL|nclenglgX")
= ey LT X L r X
VA
xJ(=1) {SJJ}{SJJ}
X (aNILTST| G |[n’'N'I'L' TS’ T),

where G is the given by the sum G = Gg + AG. The label a represents here all the

single particle quantum numbers n/yjs.
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Energy dependence and no-core Shell Model for *He

-22
’mihaiiheAJMS" using 1:2 —+—
‘'mihai_he4_8MS’ using 1:2 ---x-—-
=225 |- 4
23 | ]
-235 4

-255 | b
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Starting energy dependence of G and Gf for
(051/2)2./7_2 =01
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CENS options

© You need to fix the number of starting energies, default is 5
and the energies run from -5 to -140 MeV

You need to choose the oscillator energy in MeV

The G-matrix does not depend on number of nucleons.

© 0O

You can use square, triangular or wings as options for the
model space.

© You need to fix the size of the model space
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Recipe for Vlowk

@ Diagonalize the two-body Schrédinger equation in momentum space for all
momenta

Choose a cutoff which defines the model space in terms of relative momenta
Use exact eigenvalues and momenta to perform a similarity transformation

Obtain effective interaction in relative momenta

Integrate to get harmonic oscillator matrix elements for relative quantum
numbers

@ Transform to lab frame

Potential drawback: no connection with harmonic oscillator cutoff. Results are cutoff

dependent and one needs cutoff dependent many-body forces as well.
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CENS options

@ You need to fix the the cutoff for model space in momentum
space, and the infinite space.

@ Fix number of integration points for the model space and the
huge space

You need to choose the oscillator energy in MeV

You need to fix 2n + / for the model space.

© 00

You can use square, triangular and wings as options for the
model space in an oscillator representation.
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The A—body Hamiltonian H is defined as
1 A A
H= =3k + > View_k(i.J)-
2m 4 —
i=1 i<j
The spurious center of mass energy is removed by writing the internal kinetic energy as
A 2 A
1 ks k; - k;j
Tin=T—Tem = (1— = Ly L
i em = A)Ezm >

The introduction of an additional two-body term yields a modified two-body

interaction
QL Kk -k
Hy = Vlowfk + Vem. = Z (Vlowfk(i’j) - ;TTAJ> 0
i<j

This interaction is in turn written out in terms of harmonic oscillator elements.
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G-matrix

The A—body Hamiltonian H is defined as for the Vlow, case

1 &, &
HZ%E‘”*ZG(“J)'

i<j

The spurious center of mass energy is removed by writing the internal kinetic energy as

A 2 A
1 k2 ki - k;
Vi = 7= Vo = (1* z) 2 om A

The modified two-body interaction
A

ki - k;

— mA
1<j

This interaction is in turn written out in terms of harmonic oscillator elements.
Both the G-matrix codes and the Vi, _x codes list separately G or Vigw_k in
.. K;-k; .. .
addition to the term ——7l. The last term has to be multiplied by hw/A in order to be

used in derivations of the effective interaction.
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No-core

The total Hamiltonian is

AL TR 1 L, A maw? »
w = 5 =
HP:E P 2—’+§mwr,- P+E P|:V,-j—ﬁ(r,-—rj) HP
i=1 i<j e

—PHcomP.

The two-body part of the center-of-mass Hamiltonian is listed separately and needs to
be multiplied by fw/A. Since we only give the two-body part, you need to add the
Harmonic oscillator single-particle energies to this part and multiply the harmonic
oscillator single-particle energies with fiw/A as well.

Note that the no-core Hamiltonian depends explicitely on the mass number A. The

. . . k: -k
G-matrix and Viow—k include only a mass dependence via the term ——. The

Coulomb interaction can be included in all models.
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Two-body Matrix Elements |

The renormalized nucleon-nucleon interaction in an arbitrary two-particle basis in the
laboratory frame is given by

(ab|Hi|cd) = ((nalajatz,)(nblbjbtz, ) I T2| Hi |(nclejetz. ) (naldjatzy)ITz) -

Here Hp can be a G-matrix, it can be a no-core or Vlowk interaction. The two-body
state |ab) is implicitly coupled to good angular momentum J. The labels n, 4 number
all bound, resonant and discretized scattering states with orbital and angular momenta
(Is...dsJa...d)- Here these single-particle states will be the Hartree-Fock states.

In order to efficiently calculate the matrix elements, we introduce a two-particle
harmonic oscillator basis completeness relation

D leB)epl =1, *
as<p
where the sum is not restricted in the neutron-proton case. We introduce the greek
single particle labels «, 3 for the single-particle harmonic oscillator states in order to

distinguish them from the latin single-particle labels Hartree-Fock states a, b
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Two-body Matrix Elements Il

The interaction can then be expressed in the complete basis is

Hi= 5" 5" |aB)(aBlHry) (3],

a<B <o

where the sums over two-particle harmonic oscillator states are infinite. The expansion
coefficients

(@BIHi176) = ((naljaten )(nalajstss) T

Hy |(”Wl“/jwtzy )(nslsjstzs)IT2)

represent the interaction Hr in an antisymmetrized two-particle harmonic oscillator
basis, and may easily be calculated using the well known Moshinsky transformation

coefficients.
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Two-body Matrix Elements IlI

The matrix elements are calculated numerically up to N harmonic oscillator two-body
states

N N
(ab|Hiled) = > > " (ablaB){aB|Hi|y5)(v5|cd).

aspy<s
The two-particle overlap integrals (ab|a3) read

(ala)(b]B) — (=1)">~75(a|B)(b|e)
(1 + 6ab)(1 + 6045)

(ablaf) = (5)

for identical particles (proton-proton or neutron-neutron states) and
(ablaB) = (ala)(b|B) (6)

for the proton-neutron case.
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