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What do we want to do?

An effective interaction for the shell model based on an NN or even NNN
nuclear force.

We need then to understand how to define model spaces for various nuclear
systems and their link to large-scale shell-model calculations

We need to renormalize the repulsive part of the NN force (maybe also NNN
force).

This leads to the first step: computation of the G -matrix, or no-core interaction
or Vlow−k interactions.

The next step is the computation of a model space effective interaction and/or
operator. Such interactions are normally of two-body character. There are
calculations with three-body forces also, standard shell-model, no-core
shell-model , coupled-cluster and Green’s function Monte Carlo for light nuclei.

Finally, applications to nuclear systems using the shell model, Green’s function
methods, many-body perturbation theory, Coupled Cluster etc..
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This is what we typically want to do

Find the lowest (≈ 10–50) solution of the eigenvalue problem

H |Ψm(A)〉 = (T + V ) |Ψm(A)〉 = Em |Ψm(A)〉

Derivation of a model-space effective Hamiltonian:

H = H0 + H1, H0 = T + U, H1 = V − U.

Model P–space and excluded Q–space:

P =
nX

i=1

|ψi 〉 〈ψi | , Q =
∞X

i=n+1

|ψi 〉 〈ψi | .

and model space Hamiltonian

PHeff P |Ψm〉 = P
“eH0 + (H1)eff

”
P |Ψm〉 = EmP |Ψm〉

CENS: A Computational Environment for Nuclear Structure Lecture Set II: Renormalization



Renormalizations

Definitions
No-Core Shell-Model Calculations
Green’s function renormalization
Momentum-space truncations and effective interactions
Final Effective two-body Hamiltonians

Model Space and Hamiltonians

P =
DX

i=1

|ψi 〉 〈ψi | ,

and

Q =
∞X

i=D+1

|ψi 〉 〈ψi | ,

with D being the dimension of the model space, and PQ = 0, P2 = P, Q2 = Q and

P + Q = I . The wave functions |ψi 〉 are eigenfunctions of the unperturbed

hamiltonian H0 = T + U (with eigenvalues εi ), where T is the kinetic energy and U

an appropriately chosen one-body potential, normally that of the harmonic oscillator

(h.o.). The full hamiltonian is then rewritten as H = H0 + H1 with H1 = V − U, V

being e.g. the nucleon-nucleon (NN) interaction
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Wave Operator I

We define the projection of the exact wave function |Ψα〉 of a state α, i.e. the
solution to the full Schrödinger equation

H |Ψα〉 = Eα |Ψα〉 ,

as P |Ψα〉 =
˛̨
ΨM
α

¸
and a wave operator Ω which transforms all the model states back

into the corresponding exact states as |Ψα〉 = Ω
˛̨
ΨM
α

¸
. The latter statement is

however not trivial, it actually means that there is a one-to-one correspondence
between the d exact states and the model functions. We will now assume that the
wave operator Ω has an inverse. Use a similarity transformation of the hamiltonian

Ω−1HΩΩ−1 |Ψα〉 = EαΩ−1 |Ψα〉 .

CENS: A Computational Environment for Nuclear Structure Lecture Set II: Renormalization



Renormalizations

Definitions
No-Core Shell-Model Calculations
Green’s function renormalization
Momentum-space truncations and effective interactions
Final Effective two-body Hamiltonians

Wave Operator II

Recall also that |Ψα〉 = Ω
˛̨
ΨM
α

¸
, which means that Ω−1 |Ψα〉 =

˛̨
ΨM
α

¸
insofar as the

inverse of Ω exists. Let us define the transformed hamiltonian H = Ω−1HΩ, which
can be rewritten in terms of the operators P and Q (P + Q = I ) as

H = PHP + PHQ + QHP + QHQ.

The eigenvalues of H are the same as those of H, since a similarity transformation
does not affect the eigenvalues.

H
˛̨̨
ΨM
α

E
= Eα

˛̨̨
ΨM
α

E
,

with the operator Q, one can show the so-called decoupling condition

QHP = 0.
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Wave Operator III

The last equation is an important relation which states that the eigenfunction P |Ψα〉
is a pure model space eigenfunction. This implies that we can define an effective
model space hamiltonian

Heff = PHP = PΩ−1HΩP,

or equivalently
HΩP = ΩPHeffP,

which is the Bloch equation. This equation can be used to determine the wave
operator Ω.
The wave operator is often expressed as

Ω = 1 + χ,

where χ is known as the correlation operator.
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Wave Operator IV

The wave operator Ω can be ordered in terms of the number of interactions with the
perturbation H1

Ω = 1 + Ω(1) + Ω(2) + . . . ,

where Ω(n) means that we have n H1 terms. Explicitly, the above equation reads

Ω |ψα〉 = |ψα〉+
X

i

|i〉 〈i |H1 |ψα〉
εα − εi

+
X

ij

|i〉 〈i |H1 |j〉 〈j |H1 |ψα〉
(εα − εi )(εα − εj )

−
X
βi

|i〉 〈i |H1

˛̨
ψβ
¸ ˙
ψβ
˛̨

H1 |ψα〉
(εα − εi )(εα − εβ)

+ . . . ,

where ε are the unperturbed energies of the P-space
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Understanding excitations, model spaces and excluded
spaces

We always start with a ’vacuum’ reference state, the Slater determinant for the
believed dominating configuration of the ground state. Here a simple case of eight
particles with single-particle wave functions φi (xi )

Φ0 =
1
√

8!

0BBBBB@
φ1(x1) φ1(x2) . . . φ1(x8)
φ2(x1) φ2(x2) . . . φ2(x8)
φ3(x1) φ3(x2) . . . φ3(x8)
. . . . . . . . . . . .
. . . . . . . . . . . .

φ8(x1) φ8(x2) . . . φ8(x8)

1CCCCCA
If this is it, we are staying at the Hartree-Fock level. We can however allow for a linear
combination of excitations beyond the ground state, viz., we could assume that we
include 1p-1h and 2p-2h excitations

Ψ2p−2h = (1 + T1 + T2)Φ0

T1 is a 1p-1h excitation while T2 is a 2p-2h excitation.
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Understanding excitations, model spaces and excluded
spaces

The single-particle wave functions of

Φ0 =
1
√

8!

0BBBBB@
φ1(x1) φ1(x2) . . . φ1(x8)
φ2(x1) φ2(x2) . . . φ2(x8)
φ3(x1) φ3(x2) . . . φ3(x8)
. . . . . . . . . . . .
. . . . . . . . . . . .

φ8(x1) φ8(x2) . . . φ8(x8)

1CCCCCA
are normally chosen as the solutions of the so-called non-interacting part of the

Hamiltonian, H0. A typical basis is provided by the harmonic oscillator problem.
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Excitations in Pictures
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Excitations

a a a aa a a aεF

ε4
ε3

ε2
ε1

�

R

a a
�

R

T 2
1 T2

aa
�

R

�

R

2p − 2h
1p − 1h @@R

?@@R

Shell-Model Truncations

Truncated shell model with 2p− 2h
has Ψ2p−2h = (1 + T1 + T2)Φ0

Energy contains then

E2p−2h =

〈Φ0(1+T †1 +T †2 )|H|(1+T1+T2)Φ0〉

Note that T 2
1 T2 is not in truncated

shell model. Important.
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Simple Toy Model to illustrate basic principles

Choose a hamiltonian that depends linearly on a strength parameter z

H = H0 + zH1,

with 0 ≤ z ≤ 1, where the limits z = 0 and z = 1 represent the non-interacting
(unperturbed) and fully interacting system, respectively. The model is an eigenvalue
problem with only two available states, which we label P and Q. Below we will let
state P represent the model-space eigenvalue whereas state Q represents the
eigenvalue of the excluded space. The unperturbed solutions to this problem are

H0ΦP = εP ΦP

and
H0ΦQ = εQ ΦQ ,

with εP < εQ . We label the off-diagonal matrix elements X , while XP = 〈ΦP |H1 |ΦP〉
and XQ = 〈ΦQ |H1 |ΦQ〉.
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Simple Two-Level Model

The exact eigenvalue problem„
εP + zXP zX

zX εQ + zXQ

«
yields

E(z) =
1

2
{εP + εQ + zXP + zXQ ± (εQ − εP + zXQ − zXP )

×

s
1 +

4z2X 2

(εQ − εP + zXQ − zXP )2

)
.

A Rayleigh-Schrödinger like expansion for the lowest eigenstate

E = εP + zXP +
z2X 2

εP − εQ
+

z3X 2(XQ − XP )

(εP − εQ )2
+

z4X 2(XQ − XP )2

(εP − εQ )3
−

z4X 4

(εP − εQ )3
+ . . . ,

which can be viewed as an effective interaction for state P in which state Q is taken

into account to successive orders of the perturbation.
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Another look at the problem: Similarity Transformations

We have defined a transformation

Ω−1HΩΩ−1 |Ψα〉 = EαΩ−1 |Ψα〉 .

We rewrite this for later use, introducing Ω = eT , as

H′ = e−T HeT ,

and T is constructed so that QH′P = PH′Q = 0. The P-space effective Hamiltonian
is given by

Heff = PH′P,

and has d exact eigenvalues of H.
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Another look at the simple 2× 2 Case, Jacobi Rotation

We have the simple model „
εP + zXP zX

zX εQ + zXQ

«
Rewrite for simplicity as a symmetric matrix H ∈ R2×2

H =

»
H11 H12

H21 H22

–
.

The standard Jacobi rotation allows to find the eigenvalues via the orthogonal matrix
Ω

Ω = eT =

»
c s
−s c

–
,

with c = cos γ and s = sin γ. We have then that H′ = e−T HeT is diagonal.
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Simple 2× 2 Case, Jacobi Rotation first

To have non-zero nondiagonal matrix H′ we need to solve

(H22 − H11)cs + H12(c2 − s2) = 0,

and using c2 − s2 = cos(2γ) and cs = sin(2γ)/2 this is equivalent with

tan(2γ) =
2H12

H11 − H22
.

Solving the equation we have

γ =
1

2
tan−1

„
2H12

H11 − H22

«
+

kπ

2
, k = . . . ,−1, 0, 1, . . . , (1)

where kπ/2 is added due to the periodicity of the tan function.
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Simple 2× 2 Case, Jacobi Rotation first

Note that k = 0 gives a diagonal matrix on the form

H′k=0 =

»
λ1 0
0 λ2

–
, (2)

while k = 1 changes the diagonal elements

H′k=1 =

»
λ2 0
0 λ1

–
. (3)
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Simple 2× 2 system, exercise

Exercise: Find the similarity transformed expression for H′11 for a simplepairing model
and compare it with the perturbative expansion till fifth order.
Use „

−g −g
−g 2d − g

«
where εP = 0 and εq = 2d .

The effective interaction depends on the angles of the rotation matrix!
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CENS options

1 Can compute a renormalized two-body interaction using a
no-core shell-model prescription

2 Can compute a renormalized two-body interaction using a
G -matrix prescription

3 Can compute a renormalized two-body interaction using a
Vlowk prescription

4 Can compute a renormalized two-body interaction using a
renormalization group prescription in momentum space or in
oscillator space (not ideal for shell-model calculations)
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CENS image
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Effective Hamiltonian for Large Spaces, no-core
calculations

-

6

b

M

M

h

h

a

@
@
@
@
@
@
@@

@
@
@

M ≤ 2n + l ≈ 200

h ≤ 2n + l ≈ 4− 20

|(ab)JTz〉
Similarity Transformation

Diagonalize

HΩ
2 =

~p2
1 + ~p2

2

2m
+

1

2
mΩ2(~r2

1 +~r2
2 )

+V (~r1 −~r2)− mΩ2

2A
(~r1 −~r2)2

Use similarity-transformation to
obtain Veff for smaller space.

No energy dependence! HO basis.
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Translationally Invariant Hamiltonian

In deriving and effective interaction with CoM corrections, the
following expressions are helpful. The CoM momentum is

P =
A∑

i=1

~pi ,

and we have that

A∑
i=1

~p2
i =

1

A

~P2 +
∑
i<j

(~pi − ~pj )
2


meaning that[

A∑
i=1

~p2
i

2m
−

~P2

2mA

]
=

1

2mA

∑
i<j

(~pi − ~pj )
2.
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Translationally Invariant Hamiltonian

In a similar fashion we can define the CoM coordinate

~R =
1

A

A∑
i=1

~ri ,

which yields

A∑
i=1

~r2
i =

1

A

A2~R2 +
∑
i<j

(~ri −~rj )
2

 .
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Translationally Invariant Hamiltonian

If we then introduce the harmonic oscillator one-body Hamiltonian

H0 =
A∑

i=1

(
~p2

i

2m
+

1

2
mΩ2~r2

i

)
,

with Ω the oscillator frequency, we can rewrite the latter as

HHO =
~P2

2mA
+

mAΩ2~R2

2
+

1

2mA

∑
i<j

(~pi −~pj )
2 +

mΩ2

2A

∑
i<j

(~ri −~rj )
2.
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Translationally Invariant Hamiltonian

Or we could write

HHO = HCoM +
1

2mA

∑
i<j

(~pi − ~pj )
2 +

mΩ2

2A

∑
i<j

(~ri −~rj )
2,

with

HCoM =
~P2

2mA
+

mAΩ2~R2

2
.
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Translationally Invariant Hamiltonian

In shell model studies the translationally invariant one- and
two-body Hamiltonian reads for an A-nucleon system,

H =

[
A∑

i=1

~p2
i

2m
−

~P2

2mA

]
+

A∑
i<j

Vij ,

where Vij the nucleon-nucleon interaction, modified by including
the harmonic oscillator potential

A∑
i=1

1

2
mΩ2~r2

i −
mΩ2

2A

~R2 +
∑
i<j

(~ri −~rj )
2

 = 0.
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Translationally Invariant Hamiltonian

We can rewrite the Hamiltonian as

HΩ =
A∑

i=1

[
~p2

i

2m
+

1

2
mΩ2~r2

i

]
+

A∑
i<j

[
Vij −

mΩ2

2A
(~ri −~rj )

2

]
−HCoM.
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Translationally Invariant Hamiltonian

Shell-model calculations are carried out in a model space defined
by a projector P. The complementary space to the model space is
defined by the projector Q = 1− P. Consequently, for the P-space
part of the shell-model Hamiltonian we get

HΩ
P =

A∑
i=1

P

[
~p2

i

2m
+

1

2
mΩ2~r2

i

]
P +

A∑
i<j

P

[
Vij −

mΩ2

2A
(~ri −~rj )

2

]
eff

P

−PHCoMP.
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Translationally Invariant Hamiltonian

The effective interaction appearing in the last equation is in
general an A-body interaction and if it is determined without any
approximations, the model-space Hamiltonian provides an identical
description of a subset of states as the full-space Hamiltonian. The
intrinsic properties of the many-body system still do not depend on
Ω. From among the eigenstates of the Hamiltonian it is necessary
to choose only those corresponding to the same CoM energy. This
can be achieved by projecting the CoM eigenstates with energies
greater than 3

2~Ω upwards in the energy spectrum.
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The effective interaction should be determined from HΩ.
Calculation of the exact A-body effective interaction is, however,
as difficult as finding the full space solution. Usually, the effective
interaction is approximated by a two-body effective interaction
determined from a two-nucleon problem. The relevant two-nucleon
Hamiltonian is then

HΩ
2 ≡ HΩ

02+V Ω
2 =

~p2
1 + ~p2

2

2m
+

1

2
mΩ2(~r2

1 +~r2
2 )+V (~r1−~r2)−mΩ2

2A
(~r1−~r2)2 .

With this Hamiltonian we can then compute a starting-energy
independent effective interaction or G -matrix corresponding to a
two-nucleon model space defined by the projector P2. This
equation is the starting point for a no-core shell-model interaction.
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First Step

Start with the two-body equation

HΩ
2 ≡ HΩ

02+V Ω
2 =

~p2
1 + ~p2

2

2m
+

1

2
mΩ2(~r2

1 +~r2
2 )+V (~r1−~r2)−mΩ2

2A
(~r1−~r2)2 .

Define A for the specific nucleus

Define a large space in terms of the h.o. shells
2n + l ∼ 200− 300

Diagonalize exactly the two-body problem.

Transform to a smaller space with 2n + l ∼ 4− 20
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Convergence criteria

See Simen Kvaal: Harmonic oscillator eigenfunction expansions,
quantum dots, and effective interactions arxiv:0808.2145.
Accuracy of FCI calculations for quantum dots with harmonic
oscillator wave functions for many-body state: For an exact
eigenfunction which is k times differentiable we have

∆E ≤ CR
−(k+ε−1)
cut

with 0 ≤ ε < 1 and C s a constant. Rcut is the shell-energy
2n + l + d/2.
Ground state has typically k = 1 yielding

∆E ∼ R−α,

with α ≈ 1, which is a poor convergence.
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Two electrons QD, Johnson and Payne model, PRL 67,
1157 (1991)
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Three electrons QD, Johnson and Payne model, PRL 67,
1157 (1991)
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Four electrons QD, Johnson and Payne model, PRL 67,
1157 (1991)
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Five electrons QD, Johnson and Payne model, PRL 67,
1157 (1991)
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CENS options

1 You need to fix the the value of 2n + l for the maximum size
of the huge two-particle space, typically 200-300

2 You need to choose the oscillator energy in MeV

3 The no-core shell-model interaction depends on the number of
nucleons, derive one for each nucleus

4 You need to fix 2n + l for the model space.

5 Only the triangular model space is available.
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Decoupling Subspaces and the SVD, a new look at the
Lee-Suzuki Method

From Golub and Van Loan (Matrix Computations, chapters 8.6 and 12.4), Shavitt and
Redmon (J. Chem. Phys. 73, 5711 (1980)) and Suzuki (PTP 68, 246 (1982)).
Consider ω†ω = Pω†QωP, a positive semi-definite (i.e., non-negative definite)
operator, acting in the d-dimensional P space only. Since it is symmetric, we may
diagonalize it with real eigenvalues µ2

1 ≥ µ2
2 ≥ · · · ≥ µ2

d ≥ 0 and corresponding
eigenvectors |αk 〉, viz,

ω†ω |αk 〉 = µ2
k |αk 〉 , Q |αk 〉 = 0.

The eigenvectors |αk 〉 constitute an ONB for P-space. Observe that we have ordered
the eigenvalues in descending order, consistent with the interpretation of µk as
singular values to come.
See Simen Kvaal, PRC 78, 044330 (2008) for algo.
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Decoupling Subspaces and the SVD

Let the dimension of Q-space be n, such that Q + P-space is d + n-dimensional. It
should be clear that in the case that n < d , i.e., the Q-space is smaller than the
P-space, at least one of the µk must be zero. This may of course happen if n ≥ d as
well.
Let j be the number of zero eigenvalues µ2

k , i.e.,

µd = µd−1 = · · · = µd−j+1 = 0, µd−j 6= 0.

For each k ≤ d − j define |νk 〉 by

|νk 〉 :=
1

µk
ω |αk 〉 , k ≤ d − j .

It is readily seen that P |νk 〉 = 0, and that

〈νk |αk | = 0, 〈νk |ν`| = δk,`.

The vectors |νk 〉 constitute a basis for the image of ω. This basis is also orthonormal.
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Decoupling Subspaces and the SVD

We can then obtained the SVD of ω in abstract form, viz,

ω =

d−jX
k=1

µk |νk 〉 〈αk | .

Recall that the SVD of a matrix loosely can be described as taking an ONB (here the

|αk 〉), stretching it with the singular values (here µk ), and transforming into a new

orthonormal set of vectors (the |νk 〉).
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Similarity Transformations

We consider the unitary similarity transform of H given by

H′ = e−T HeT ,

and T is constructed so that QH′P = PH′Q = 0. The P-space effective Hamiltonian
is given by

Heff = PH′P,

and has d exact eigenvalues of H.
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Similarity Transformations

We need to compute T = tanh−1 X , with X = ω − ω†. This expression is defined
through its power series, viz,

tanh−1 z =
∞X

n=0

z2n+1

2n + 1
,

convergent for all |z| < 1. We make a simple observation: Since sinh(iy) = i sin y and
cosh iy = cos y , we have tanh iy = i tan y , and therefore tanh−1 ix = i tan−1 x . This is
also readily seen from the power series of tan−1:

tan−1 z =
∞X

n=0

(−1)nz2n+1

2n + 1
.
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Similarity Transformations

Notice that X is skew-symmetric (X † = −X ) and that PXP = QXQ = 0. Using the
canonical form of ω we have,

X = ω − ω† =
dX

k=1

µk (|νk 〉 〈αk | − |αk 〉 〈νk |) .

Taking the square of X yields

X 2 = −
X

k

µ2
k (|νk 〉 〈νk |+ |αk 〉 〈αk |) ,

and since Pk = |αk 〉 〈αk | and Qk = |νk 〉 〈νk | are projection operators, with P2
k = Pk ,

Q2
k = Qk , and Pk Qk = 0, we obtain

X 2n =
X

k

(−1)nµ2n
k (|νk 〉 〈νk |+ |αk 〉 〈αk |) .

Moreover,
X 2n+1 =

X
k

(−1)nµ2n+1
k (|νk 〉 〈αk | − |αk 〉 〈νk |) .
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Similarity Transformations

Insertion into the power expansion for tanh−1 X , we obtain

tanh−1 X =
∞X

n=0

X
k

(−1)nµ2n+1
k

2n + 1
(|νk 〉 〈αk | − |αk 〉 〈νk |) .

We now define
ηk := tan−1 µk ,

and by changing the order of the summation readily obtain

T = tanh−1 X =
X

k

ηk (|νk 〉 〈αk | − |αk 〉 〈νk |) ,

and note that T † = −T .

Observe how the ηk can be interpreted as angles, and that the singular values are

simply the tangent of these angles.
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Similarity Transformations

The goal here is to compute the exponential exp T , and for that we need all integer
powers of T , viz,

eT :=
∞X

n=0

T n

n!
= 1 +

∞X
n=1

T n

n!
.

By definition, T 0 = 1. Computing T 2, then T 2n and finally T 2n+1 is completely
analoguous to the computation of the powers of X ; it is the same mechanism but
“different µk ” in the summation over k. We simply state the result:

T 2n =
X

k

(−1)nη2n
k (|αk 〉 〈αk |+ |νk 〉 〈νk |) ,

T 2n+1 =
X

k

(−1)nη2n+1
k (|νk 〉 〈αk |+ |αk 〉 〈νk |) .
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Similarity Transformations

The power expansion of exp T splits into a cosine part and a sine part:

eT = 1 +
X

k

(ck − 1) (|αk 〉 〈αk |+ |νk 〉 〈νk |) +
X

k

sk (|νk 〉 〈αk |+ |αk 〉 〈νk |) ,

where for brevity we have defined

sk := sin ηk , ck := cos ηk .

Thus, exp T is manifestly a multi-dimensional rotation in the basis of P + Q-space
given by |αk 〉, |νk 〉.
The unitarity of exp T is readily checked.
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G -matrix: Resummation of a Class of Diagrams

The NN (and also NNN) are strongly repulsive at short
distances. This will give large matrix elements for the shell
model.

Construct an interaction which renormalizes the short distance
part of the nucleon-nucleon force. Here we can use a
G -matrix appropriatey defined for a model space or a no-core
interaction.

For a G -matrix we sum the so-called ladder diagrams,
representing highly excited (short distances) two-body states.
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G -matrix: Resummation of a Class of Diagrams

Then we use this renormalized short-range interaction to
compute other processes, like core-polarization diagrams etc.

Note that strictly speaking we are solving a two-body
problem. However, for the deuteron (free particles) we can
solve Schrödinger’s equation exactly. For the many-body
problem we need to define a model space and can thus sum
only selected classes of physical processes.
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Effective Hamiltonian and Model Spaces

-

6

b

M

M

h

h

a

Q

M ≤ 2n + l ≈ 4− 20

|(ab)JTz〉
Two-Body Effective Hamiltonian for
Large Space

Need to renormalize short-range
behavior of V :

Gijkl = Vijkl +
∑

mn∈Q

Vijmn
Q

ω − εm − εn
Gmnkl

Harmonic oscillator basis.

Note well energy ω dependence!

NN interactions + Coulomb.
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Effective Hamiltonian and Model Spaces

-

6

b

M

M

h

h

a

Q

M ≤ 2n + l ≈ 4− 20

|(ab)JTz〉 Two-Body Effective Hamiltonian for
Large Space

With G we can in turn include
higher-order contributions via
Many-body perturbation theory.

This is defined for a smaller space

Need to test results as function of
smaller space in connection with
shell-model calculations.
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Computational Procedure I

G(ω) = V + V
Q

ω − H0
G(ω),

or

G(ω) = V + VQ
1

ω − QH0Q
QG(ω).

The former equation applies if the Pauli operator Q commutes with the unperturbed
hamiltonian H0, whereas the latter is needed if [H0,Q] 6= 0. Similarly, the correlated
wave function Ψ is given as

|Ψ〉 = |ψ〉+
Q

ω − H0
G |ψ〉 ,

or

|Ψ〉 = |ψ〉+ Q
1

ω − QH0Q
QG |ψ〉 .
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Computational Procedure II

Defining the wave operators

Ω1 = 1 +
Q1

e1
G1,

and

Ω2 = 1 +
Q2

e2
G2,

we can rewrite the above G -matrices as

G1 = V1Ω1,

and
G2 = V2Ω2.
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Computational Procedure III

Using these relations, we rewrite G1 as

G1 = G1 − G†2

„
Ω1 − 1−

Q1

e1
G1

«
+

„
Ω†2 − 1− G†2

Q2

e2

«
G1

= G†2 + G†2

„
Q1

e1
−

Q2

e2

«
G1 + Ω†2G1 − G†2 Ω1,

we obtain the identity

G1 = G†2 + G†2

„
Q1

e1
−

Q2

e2

«
G1 + Ω†2(V1 − V2)Ω1.

The second term on the rhs. is called the propagator-correction term; it vanishes if G1

and G2 have the same propagators. The third term is often referred to as the

potential-correction term, and it disappears if G1 and G2 have the same potentials.
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Computational Procedure IV

Define the correlated wave function Ψa

G |ψa〉 = V |Ψa〉 ,

where ψa is the unperturbed wave function. Using the definition of the correlated
wave function we have

|Ψa〉 = |ψa〉+
Q

ω − H0
G |ψa〉 = |ψa〉+

Q

ω − H0
V |Ψa〉 .

Note that we have assumed that the Pauli operator Q and the unperturbed
Hamiltonian H0 commute. If we are able to obtain the correlated wave function, we
get the G -matrix by

〈ψa|G |ψb〉 = 〈ψa|V |Ψb〉 .
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Computational Procedure V

For computations, there is a handy matrix relation

Q
1

QAQ
Q =

1

A
−

1

A
P

1

PA−1P
P

1

A
,

Write
G = GF + ∆G ,

where GF is the free G -matrix (easy to compute) defined as

GF = V + V
1

ω − T
GF .

The term ∆G is a correction term defined entirely within the model space P (finite
but big) and given by e.g.,

∆G = −GF
1

e
P̃

1

P(e−1 + e−1GF e−1)P
P

1

e
GF ,

and can be solved by matrix inversion.
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Computational Procedure VI

The equation for the free matrix GF is solved in momentum space and we obtain

〈kKlLJ ST |GF

˛̨
k ′Kl ′LJ S ′T

¸
.

Transformations from the relative and center-of-mass motion system to the lab system
will be discussed below.
To obtain a G -matrix in a h.o. basis, we need the transformation

〈nNlLJ ST |GF

˛̨
n′N′l ′L′J S ′T

¸
,

with n and N the principal quantum numbers of the relative and center-of-mass
motion, respectively.

|nlNLJ ST 〉 =

Z
k2K 2dkdKRnl (

√
2αk)RNL(

p
1/2αK) |klKLJ ST 〉 .
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Computational Procedure VII

The most commonly employed sp basis is the harmonic oscillator, which in turn means
that a two-particle wave function with total angular momentum J and isospin T can
be expressed as

|(nalaja)(nb lb jb)JT 〉 =
1p

(1 + δ12)

X
λSJ

X
nNlL

F × 〈ab|λSJ〉

×(−1)λ+J−L−S λ̂


L l λ
S J J

ff
×〈nlNL|nalanb lb〉 |nlNLJ ST 〉 ,

where the term 〈nlNL|nalanb lb〉 is the familiar Moshinsky bracket.
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Computational Procedure VIII

The term 〈ab|LSJ〉 is a shorthand for the LS − jj transformation coefficient,

〈ab|λSJ〉 = ĵa ĵbλ̂Ŝ

8<: la sa ja
lb sb jb
λ S J

9=; .

Here we use x̂ =
√

2x + 1. The factor F is defined as F = 1−(−1)l+S+T
√

2
if sa = sb.
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Computational Procedure IX

The G -matrix in terms of harmonic oscillator wave functions reads

〈(ab)JT |G |(cd)JT 〉 =
X

λλ′SS′J

X
nln′ l′NN′L

`
1− (−1)l+S+T

´p
(1 + δab)(1 + δcd )

×〈ab|λSJ〉〈cd |λ′S ′J〉 〈nlNL|nalanb lbλ〉
˙
n′l ′NL|nc lc nd ldλ

′¸
×Ĵ (−1)λ+λ′+l+l′


L l λ
S J J

ff
L l ′ λ′

S J J

ff
×〈nNlLJ ST |G

˛̨
n′N′l ′L′J S ′T

¸
,

where G is the given by the sum G = GF + ∆G . The label a represents here all the

single particle quantum numbers nalaja.
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Energy dependence and no-core Shell Model for 4He
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Starting energy dependence of G and GF for
(0s1/2)2JTz = 01
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CENS options

1 You need to fix the number of starting energies, default is 5
and the energies run from -5 to -140 MeV

2 You need to choose the oscillator energy in MeV

3 The G -matrix does not depend on number of nucleons.

4 You can use square, triangular or wings as options for the
model space.

5 You need to fix the size of the model space
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Recipe for Vlowk

Diagonalize the two-body Schrödinger equation in momentum space for all
momenta

Choose a cutoff which defines the model space in terms of relative momenta

Use exact eigenvalues and momenta to perform a similarity transformation

Obtain effective interaction in relative momenta

Integrate to get harmonic oscillator matrix elements for relative quantum
numbers

Transform to lab frame

Potential drawback: no connection with harmonic oscillator cutoff. Results are cutoff

dependent and one needs cutoff dependent many-body forces as well.
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CENS options

1 You need to fix the the cutoff for model space in momentum
space, and the infinite space.

2 Fix number of integration points for the model space and the
huge space

3 You need to choose the oscillator energy in MeV

4 You need to fix 2n + l for the model space.

5 You can use square, triangular and wings as options for the
model space in an oscillator representation.
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CENS image

CENS: A Computational Environment for Nuclear Structure Lecture Set II: Renormalization



Renormalizations

Definitions
No-Core Shell-Model Calculations
Green’s function renormalization
Momentum-space truncations and effective interactions
Final Effective two-body Hamiltonians

Vlow−k

The A−body Hamiltonian H is defined as

H =
1

2m

AX
i=1

k2
i +

AX
i<j

Vlow−k(i , j).

The spurious center of mass energy is removed by writing the internal kinetic energy as

Tin = T − Tc.m. =

„
1−

1

A

« AX
i=1

k2
i

2m
−

AX
i<j

ki · kj

mA
.

The introduction of an additional two-body term yields a modified two-body
interaction

HI = Vlow−k + Vc.m. =
AX

i<j

„
Vlow−k(i , j)−

ki · kj

mA

«
.

This interaction is in turn written out in terms of harmonic oscillator elements.
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G -matrix

The A−body Hamiltonian H is defined as for the V lowk case

H =
1

2m

AX
i=1

k2
i +

AX
i<j

G(i , j).

The spurious center of mass energy is removed by writing the internal kinetic energy as

Tin = T − Tc.m. =

„
1−

1

A

« AX
i=1

k2
i

2m
−

AX
i<j

ki · kj

mA
.

The modified two-body interaction

HI = G + Vc.m. =
AX

i<j

„
G(i , j)−

ki · kj

mA

«
.

This interaction is in turn written out in terms of harmonic oscillator elements.

Both the G-matrix codes and the Vlow−k codes list separately G or Vlow−k in

addition to the term
ki ·kj

mA
. The last term has to be multiplied by ~ω/A in order to be

used in derivations of the effective interaction.

CENS: A Computational Environment for Nuclear Structure Lecture Set II: Renormalization



Renormalizations

Definitions
No-Core Shell-Model Calculations
Green’s function renormalization
Momentum-space truncations and effective interactions
Final Effective two-body Hamiltonians

No-core

The total Hamiltonian is

HωP =
AX

i=1

P

"
~p2

i

2m
+

1

2
mω2~r2

i

#
P +

AX
i<j

P

»
Vij −

mω2

2A
(~ri −~rj )

2

–
eff

P

−PHCoMP.

The two-body part of the center-of-mass Hamiltonian is listed separately and needs to
be multiplied by ~ω/A. Since we only give the two-body part, you need to add the
Harmonic oscillator single-particle energies to this part and multiply the harmonic
oscillator single-particle energies with ~ω/A as well.

Note that the no-core Hamiltonian depends explicitely on the mass number A. The

G-matrix and Vlow−k include only a mass dependence via the term
ki ·kj

mA
. The

Coulomb interaction can be included in all models.
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Two-body Matrix Elements I

The renormalized nucleon-nucleon interaction in an arbitrary two-particle basis in the
laboratory frame is given by

〈ab|HI|cd〉 = 〈(nalajatza )(nb lb jbtzb )JTz |HI |(nc lc jc tzc )(nd ld jd tzd )JTz 〉 .

Here HI can be a G -matrix, it can be a no-core or Vlowk interaction. The two-body
state |ab〉 is implicitly coupled to good angular momentum J. The labels na...d number
all bound, resonant and discretized scattering states with orbital and angular momenta
(la...d , ja...d ). Here these single-particle states will be the Hartree-Fock states.
In order to efficiently calculate the matrix elements, we introduce a two-particle
harmonic oscillator basis completeness relationX

α≤β
|αβ〉〈αβ| = 1, (4)

where the sum is not restricted in the neutron-proton case. We introduce the greek

single particle labels α, β for the single-particle harmonic oscillator states in order to

distinguish them from the latin single-particle labels Hartree-Fock states a, b
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Two-body Matrix Elements II

The interaction can then be expressed in the complete basis is

HI =
X
α≤β

X
γ≤δ
|αβ〉〈αβ|HI|γδ〉〈γδ|,

where the sums over two-particle harmonic oscillator states are infinite. The expansion
coefficients

〈αβ|HI|γδ〉 =
D

(nαlαjαtzα )(nβ lβ jβtzβ )JTz

˛̨̨
HI

˛̨
(nγ lγ jγtzγ )(nδ lδ jδtzδ )JTz

¸
,

represent the interaction HI in an antisymmetrized two-particle harmonic oscillator

basis, and may easily be calculated using the well known Moshinsky transformation

coefficients.
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Two-body Matrix Elements III

The matrix elements are calculated numerically up to N harmonic oscillator two-body
states

〈ab|HI|cd〉 =
NX

α≤β

NX
γ≤δ
〈ab|αβ〉〈αβ|HI|γδ〉〈γδ|cd〉.

The two-particle overlap integrals 〈ab|αβ〉 read

〈ab|αβ〉 =
〈a|α〉〈b|β〉 − (−1)J−jα−jβ 〈a|β〉〈b|α〉p

(1 + δab)(1 + δαβ)
(5)

for identical particles (proton-proton or neutron-neutron states) and

〈ab|αβ〉 = 〈a|α〉〈b|β〉 (6)

for the proton-neutron case.
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