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Definitions and notations

We have assumed that the interacting part of the Hamiltonian can be approximated
by a two-body interaction. This means that our Hamiltonian is written as

Ĥ = Ĥ0 + Ĥ1 =
NX

i=1

hi +
NX

i<j=1

V (rij ), (1)

with

H0 =
NX

i=1

hi =
NX

i=1

(t(ri ) + u(ri )) . (2)

The onebody part u(ri ) is normally approximated by a harmonic oscillator potential or
the Coulomb interaction in case of electronic systems. However, other potentials are
fully possible, such as one derived from the self-consistent solution of the Hartree-Fock
equations.

Note: I use N for the number of particles.
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SM

Definitions and notations

Our Hamiltonian is invariant under the permutation (interchange) of two particles.

Since we deal with fermions however, the total wave function is antisymmetric. Let P̂
be an operator which interchanges two particles. Due to the symmetries we have
ascribed to our Hamiltonian, this operator commutes with the total Hamiltonian,

[Ĥ, P̂] = 0,

meaning that Ψλ(r1, r2, . . . , rN ) is an eigenfunction of P̂ as well, that is

P̂ij Ψλ(r1, r2, . . . , ri , . . . , rj , . . . , rN ) = βΨλ(r1, r2, . . . , ri , . . . , rj , . . . , rN ),

where β is the eigenvalue of P̂. We have introduced the suffix ij in order to indicate

that we permute particles i and j . The Pauli principle tells us that the total wave

function for a system of fermions has to be antisymmetric, resulting in the eigenvalue

β = −1.
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SM

Definitions and notations

In our case we assume that we can approximate the exact eigenfunction with a Slater
determinant

Φ(r1, r2, . . . , rN , α, β, . . . , σ) =
1√
N!

˛̨̨̨
˛̨̨̨
˛
ψα(r1) ψα(r2) . . . . . . ψα(rN )
ψβ(r1) ψβ(r2) . . . . . . ψβ(rN )
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

ψσ(r1) ψσ(r2) . . . . . . ψγ(rN )

˛̨̨̨
˛̨̨̨
˛ ,

where ri stand for the coordinates and spin values of a particle i and α, β, . . . , γ are

quantum numbers needed to describe remaining quantum numbers.
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Definitions and notations

The single-particle function ψα(ri ) are eigenfunctions of the onebody Hamiltonian hi ,
that is

hi = h(ri ) = t(ri ) + u(ri ),

with eigenvalues
hiψα(ri ) = (t(ri ) + u(ri )ψα(ri ) = εαψα(ri ).

The energies εα are the so-called non-interacting single-particle energies, or

unperturbed energies. The total energy is in this case the sum over all single-particle

energies, if no two-body or more complicated many-body interactions are present. In

many nuclear applications these unperturbed energies are the harmonic oscillator

energies.
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Definitions and notations

Let us denote the ground state energy by E0. According to the variational principle we
have

E0 ≤ E [Φ] =

Z
Φ∗ĤΦdτ

where Φ is a trial function which we assume to be normalizedZ
Φ∗Φdτ = 1,

where we have used the shorthand dτ = dr1dr2 . . . drN .
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Definitions and notations

In the Hartree-Fock method the trial function is the Slater determinant of Eq. (5)
which can be rewritten as

Ψ(r1, r2, . . . , rN , α, β, . . . , ν) =
1√
N!

X
P

(−)P P̂ψα(r1)ψβ(r2) . . . ψν(rN ) =
√

N!AΦH ,

(3)

where we have introduced the antisymmetrization operator A defined by the

summation over all possible permutations of two nucleons.
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Definitions and notations

It is defined as

A =
1

N!

X
p

(−)pP̂, (4)

with p standing for the number of permutations. We have introduced for later use the
so-called Hartree-function, defined by the simple product of all possible single-particle
functions

ΦH (r1, r2, . . . , rN , α, β, . . . , ν) = ψα(r1)ψβ(r2) . . . ψν(rN ).
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Definitions and notations

Both Ĥ0 and Ĥ1 are invariant under all possible permutations of any two particles and
hence commute with A

[H0,A] = [H1,A] = 0. (5)

Furthermore, A satisfies
A2 = A, (6)

since every permutation of the Slater determinant reproduces it.
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Definitions and notations

The expectation value of Ĥ0Z
Φ∗Ĥ0Φdτ = N!

Z
Φ∗HAĤ0AΦH dτ

is readily reduced to Z
Φ∗Ĥ0Φdτ = N!

Z
Φ∗H Ĥ0AΦH dτ,

where we have used eqs. (5) and (6). The next step is to replace the

antisymmetrization operator by its definition Eq. (3) and to replace Ĥ0 with the sum
of one-body operators

Z
Φ∗Ĥ0Φdτ =

NX
i=1

X
p

(−)p
Z

Φ∗H ĥi P̂ΦH dτ.
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Definitions and notations

The integral vanishes if two or more particles are permuted in only one of the
Hartree-functions ΦH because the individual single-particle wave functions are
orthogonal. We obtain then

Z
Φ∗Ĥ0Φdτ =

NX
i=1

Z
Φ∗H ĥi ΦH dτ.

Orthogonality of the single-particle functions allows us to further simplify the integral,
and we arrive at the following expression for the expectation values of the sum of
one-body Hamiltonians

Z
Φ∗Ĥ0Φdτ =

NX
µ=1

Z
ψ∗µ(r)ĥψµ(r)dr. (7)
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Definitions and notations

We introduce the following shorthand for the above integral

〈µ|h|µ〉 =

Z
ψ∗µ(r)ĥψµ(r),

and rewrite Eq. (7) as Z
Φ∗Ĥ0Φdτ =

NX
µ=1

〈µ|h|µ〉. (8)
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Definitions and notations

The expectation value of the two-body Hamiltonian is obtained in a similar manner.
We have Z

Φ∗Ĥ1Φdτ = N!

Z
Φ∗HAĤ2AΦH dτ,

which reduces to

Z
Φ∗Ĥ1Φdτ =

NX
i≤j=1

X
p

(−)p
Z

Φ∗H V (rij )P̂ΦH dτ,

by following the same arguments as for the one-body Hamiltonian.
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Definitions and notations

Because of the dependence on the inter-particle distance rij , permutations of any two
particles no longer vanish (Slater’s rule), and we get

Z
Φ∗Ĥ1Φdτ =

NX
i<j=1

Z
Φ∗H Vrij )(1− Pij )ΦH dτ.

where Pij is the permutation operator that interchanges nucleon i and nucleon j .

Again we use the assumption that the single-particle wave functions are orthogonal.
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Definitions and notations

We obtain

Z
Φ∗Ĥ1Φdτ =

1

2

NX
µ=1

NX
ν=1

»Z
ψ∗µ(ri )ψ

∗
ν(rj )V (rij )ψµ(ri )ψν(rj )dri rj

−
Z
ψ∗µ(ri )ψ

∗
ν(rj )V (rij )ψν(ri )ψµ(ri )dri rj

–
.

(9)

The first term is the so-called direct term. It is frequently also called the Hartree term,

while the second is due to the Pauli principle and is called the exchange term or just

the Fock term. The factor 1/2 is introduced because we now run over all pairs twice.
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Definitions and notations

The last equation allows us to introduce some further definitions. The single-particle
wave functions ψµ(r), defined by the quantum numbers µ and r (recall that r also
includes spin degree) are defined as the overlap

ψα(r) = 〈r|α〉.
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Definitions and notations

We introduce the following shorthands for the above two integrals

〈µν|V |µν〉 =

Z
ψ∗µ(ri )ψ

∗
ν(rj )V (rij )ψµ(ri )ψν(rj )dri rj ,

and

〈µν|V |νµ〉 =

Z
ψ∗µ(ri )ψ

∗
ν(rj )V (rij )ψν(ri )ψµ(ri )dri rj .
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Definitions and notations

The direct and exchange matrix elements can be brought together if we define the
antisymmetrized matrix element

〈µν|V |µν〉AS = 〈µν|V |µν〉 − 〈µν|V |νµ〉,

or for a general matrix element

〈µν|V |στ〉AS = 〈µν|V |στ〉 − 〈µν|V |τσ〉.

It has the symmetry property

〈µν|V |στ〉AS = −〈µν|V |τσ〉AS = −〈νµ|V |στ〉AS .
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Definitions and notations

The antisymmetric matrix element is also hermitian, implying

〈µν|V |στ〉AS = 〈στ |V |µν〉AS .

With these notations we rewrite Eq. (9) as

Z
Φ∗Ĥ1Φdτ =

1

2

NX
µ=1

NX
ν=1

〈µν|V |µν〉AS . (10)
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Hartree-Fock equations

Use Euler-Lagrange equations and introduce N2 Lagrange multipliers which we denote
by εµν , we can write the variational equation for the energy functional as

δE −
NX
µ=1

NX
ν=1

εµνδ

Z
ψ∗µψν = 0.

For the orthogonal wave functions ψµ this reduces to

δE −
NX
µ=1

εµδ

Z
ψ∗µψµ = 0.
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Hartree-Fock equations

We can then obtain the standard Hartree-Fock equations"
−1

2
∇2

i + u(ri ) +
NX
ν=1

Z
ψ∗ν(rj )V (rij )ψν(rj )drj

#
ψµ(xi)

−
"

NX
ν=1

Z
ψ∗ν(rj )V (rij )ψµ(rj )drj

#
ψν(ri ) = εµψµ(ri ).

Not practical for numerical computations.
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Hartree-Fock equations

We prefer to expand the single-particle function in terms of an oscillator basis

ψa =
∞X
α=0

Caαφα,

where a and α represent the relevant single-particle wave functions and φα are the
harmonic oscillator functions.

We then vary the coefficients Caα. This means that we can precalculate all matrix

elements (one-body and two-body) in the basis φα.

CENS: A Computational Environment for Nuclear Structure Lecture Set III: Many-body theories



HF
MBPT

SM

Hartree-Fock equations, Exercise

Insert the basis

ψhi
=

MX
α=0

Chiαφα,

in the Energy functional (assume a truncation in M)

E [Φ] =
X

h

〈h|h0(h)|h〉+
1

2

X
h1

X
h2

〈h1h2|V |h1h2〉AS .

and find the single-particle Hartree-Fock equations.
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Reminder from Lecture II: Vlow−k

The A−body Hamiltonian H is defined as

H =
1

2m

AX
i=1

k2
i +

AX
i<j

Vlow−k(i , j).

Write internal kinetic energy as

Tin = T − Tc.m. =

„
1− 1

A

« AX
i=1

k2
i

2m
−

AX
i<j

ki · kj

mA
.

The introduction of an additional two-body term yields a modified two-body
interaction

HI = Vlow−k + Vc.m. =
AX

i<j

„
Vlow−k(i , j)− ki · kj

mA

«
.

This interaction is in turn written out in terms of harmonic oscillator elements.
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Reminder from Lecture II: G -matrix

The A−body Hamiltonian H is defined as for the V lowk case

H =
1

2m

AX
i=1

k2
i +

AX
i<j

G(i , j).

Internal kinetic energy as

Tin = T − Tc.m. =

„
1− 1

A

« AX
i=1

k2
i

2m
−

AX
i<j

ki · kj

mA
.

The modified two-body interaction

HI = G + Vc.m. =
AX

i<j

„
G(i , j)− ki · kj

mA

«
.

This interaction is in turn written out in terms of harmonic oscillator elements.

Both the G-matrix codes and the Vlow−k codes list separately G or Vlow−k in

addition to the term
ki ·kj

mA
. The last term has to be multiplied by ~ω/A in order to be

used in derivations of the effective interaction.
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Reminder from Lecture II: No-core

The total Hamiltonian is

HωP =
AX

i=1

P

"
~p2

i

2m
+

1

2
mω2~r2

i

#
P +

AX
i<j

P

»
Vij − mω2

2A
(~ri −~rj )

2

–
eff

P

−PHCoMP.

The two-body part of the center-of-mass Hamiltonian is listed separately and needs to
be multiplied by ~ω/A. Since we only give the two-body part, you need to add the
Harmonic oscillator single-particle energies to this part and multiply the harmonic
oscillator single-particle energies with ~ω/A as well.

Note that the no-core Hamiltonian depends explicitely on the mass number A. The

G-matrix and Vlow−k include only a mass dependence via the term
ki ·kj

mA
. The

Coulomb interaction can be included in all models.
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Two-body Matrix Elements I

The renormalized nucleon-nucleon interaction in an arbitrary two-particle basis in the
laboratory frame is given by

〈ab|HI|cd〉 = 〈(nalajatza )(nb lb jbtzb )JTz |HI |(nc lc jc tzc )(nd ld jd tzd )JTz 〉 .

Here HI can be a G -matrix, it can be a no-core or Vlowk interaction. The two-body
state |ab〉 is implicitly coupled to good angular momentum J. The labels na...d number
all bound, resonant and discretized scattering states with orbital and angular momenta
(la...d , ja...d ). Here these single-particle states will be the Hartree-Fock states.
In order to efficiently calculate the matrix elements, we introduce a two-particle
harmonic oscillator basis completeness relationX

α≤β
|αβ〉〈αβ| = 1,

where the sum is not restricted in the neutron-proton case. We introduce the greek

single particle labels α, β for the single-particle harmonic oscillator states in order to

distinguish them from the latin single-particle labels Hartree-Fock states a, b
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Two-body Matrix Elements II

The interaction can then be expressed in the complete basis is

HI =
X
α≤β

X
γ≤δ
|αβ〉〈αβ|HI|γδ〉〈γδ|,

where the sums over two-particle harmonic oscillator states are infinite. The expansion
coefficients

〈αβ|HI|γδ〉 =
D

(nαlαjαtzα )(nβ lβ jβtzβ )JTz

˛̨̨
HI

˛̨
(nγ lγ jγtzγ )(nδ lδ jδtzδ )JTz

¸
,

represent the interaction HI in an antisymmetrized two-particle harmonic oscillator

basis, and may easily be calculated using the well known Moshinsky transformation

coefficients.
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Two-body Matrix Elements III

The matrix elements are calculated numerically up to N harmonic oscillator two-body
states

〈ab|HI|cd〉 =
NX

α≤β

NX
γ≤δ
〈ab|αβ〉〈αβ|HI|γδ〉〈γδ|cd〉.

The two-particle overlap integrals 〈ab|αβ〉 read

〈ab|αβ〉 =
〈a|α〉〈b|β〉 − (−1)J−jα−jβ 〈a|β〉〈b|α〉p

(1 + δab)(1 + δαβ)

for identical particles (proton-proton or neutron-neutron states) and

〈ab|αβ〉 = 〈a|α〉〈b|β〉

for the proton-neutron case.
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Wave Operator

The wave operator Ω in Rayleigh-Schrödinger perturbation theory can be ordered in
terms of the number of interactions with the perturbation H1

Ω = 1 + Ω(1) + Ω(2) + . . . ,

where Ω(n) means that we have n H1 terms. Explicitly, the above equation reads

Ω |ψα〉 = |ψα〉+
X

i

|i〉 〈i |H1 |ψα〉
εα − εi

+
X

ij

|i〉 〈i |H1 |j〉 〈j |H1 |ψα〉
(εα − εi )(εα − εj )

−
X
βi

|i〉 〈i |H1

˛̨
ψβ
¸ ˙
ψβ
˛̨

H1 |ψα〉
(εα − εi )(εα − εβ)

+ . . . ,

where ε are the unperturbed energies of the P-space
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Wave Operator

The first-order part of the wave operator

X
i

|i〉 〈i |H1 |ψα〉
εα − εi

where ε are the unperturbed energies. How does it look like in a diagrammatic form

with a two-body interaction?
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First-order diagrams building up the wave operator

p q

r s

p q

r

p q

p

p

q

p

q

α β

γ δ α

α β

γ

α
β

α

β β

α

(a) (b) (c) (d)

(e) (f) (g)
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Perturbation Theory

Order by order perturbation theory in terms of the renormalized
interaction.

2-8

2-4

2-7

2-32-1 2-2

2-5 2-6
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Resumming Diagrams

Define the following

V
[12]
1234J = 〈(12)J|V |(34)J〉

V
[13]
1234J =

∑
J′

(−)j1+j4+J+J′ Ĵ ′
2
{

j3 j1 J
j2 j4 J ′

}
V

[12]
1234J

V
[14]
1234J =

∑
J′

(−)j1+j4+J+2j3 Ĵ ′
2
{

j4 j1 J
j2 j3 J ′

}
V

[12]
1234J

V
[14]
1234J =

∑
J′

(−)2j1+2j2+2j3 Ĵ ′
2
{

j4 j1 J
j3 j2 J ′

}
V

[13]
1234J
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Coupling Order by Pictures

1 2

3 4

1 2

3 4

1 2

3 4

(a) (b) (c)
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Particle-Particle and Hole-Hole Correlations

Summation of diagrams in the [12] channel, a more general
G -matrix

Γ
[12]
1234J = Γ

[12]
2143J = −Γ

[12]
2134J = Γ

[12]
1243J

s = ε1 + ε2 = ε3 + ε4

Γ[12] = V [12] + V [12](gg)Γ[12]

Ĝ[12] =
Q

[12]
pp

s − ε5 − ε6 + ıη
− Q

[12]
hh

s − ε5 − ε6 − ıη
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Examples

(a) (b) (c)

(d) (e) (f)

α β

βp q
p q

r w

p q

α

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4
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Examples: Analytic Expression

(a) =
1

2

∑
pq

V
[12]
12pqJ

1

s − εp − εq
V

[12]
pq34J

(b) =
1

2

∑
αβ

V
[12]
12αβJ

1

−s + εα + εβ
V

[12]
αβ34J

(c) =
1

4

∑
pqrw

V
[12]
12pqJ

1

s − εp − εq
V

[12]
pqrwJ

1

s − εr − εw
V

[12]
rw34J
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Particle-Hole Diagrams

Screening corrections and vertex renormalization, the equations for
the [13] and [14] channels

Γ
[13]
1234J(t) = V

[13]
1234J +

∑
ph

V
[13]
12phJ Ĝ[13]Γ

[13]
ph34J(t)

Γ
[14]
1234J(u) = V

[14]
1234J −

∑
ph

V
[14]
12phJ Ĝ[14]Γ

[14]
ph34J(u)
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Particle-Hole Diagrams

Screening corrections and vertex renormalization, the equations for the [13] and [14]
channels

Γ[13] = V [13] + V [13](gg)Γ[13]

Γ[14] = V [14] + V [14](gg)Γ[14]

t = ε3 − ε1 = ε2 − ε4

u = ε1 − ε4 = ε3 − ε2

Ĝ[13] =
Q

[13]
ph

t − εp + εh + ıη
−

Q
[13]
hp

t + εp − εh − ıη

Ĝ[14] =
Q

[14]
ph

u − εp + εh + ıη
−

Q
[14]
hp

u + εp − εh − ıη
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Particle-Hole Examples

(a) (b) (c) (d)

p

r

q

p

r

q

α

γ

β

α

γ

β

CENS: A Computational Environment for Nuclear Structure Lecture Set III: Many-body theories



HF
MBPT

SM

Particle-Hole Examples

(a) (b) (c)

(d) (e) (f)

p

q

r
p

q

r

r

q

p

r

qp

α

γ

β

α

γ
γ

γ

α
β

β

β

α
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Particle-Hole Examples

(a) (b) (c)

(d) (e) (f)

r

r

γ

γ

p

r

q

s p

q

r

s p

q

s

sp

q

α

γ

α

γ

α

α
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Effective Operators

In Rayleigh-Schrödinger perturbation theory, the effective
interaction Heff can be written out order by order in the interaction
H1 as

PHeffP = PH1P + PH1
Q

e
H1P + PH1

Q

e
H1

Q

e
H1P + . . . .

Here we have defined e = ω −H0, where ω is the so-called starting
energy, defined as the unperturbed energy of the interacting
particles. Similarly, the exact wave function |Ψα〉 can now be
written in terms of the model space wave function as

|Ψα〉 = |Φα〉+
Q

e
H1 |Φα〉+

Q

e
H1

Q

e
H1 |Φα〉+ . . .
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Effective Operators

In studies of for example nuclear transitions such as beta decay,
the quantity of interest is the transition matrix element between an
initial state |Ψi 〉 and a final state |Ψf 〉 of an operator O defined as

Ofi =
〈Ψf | O |Ψi 〉√〈Ψf |Ψf 〉 〈Ψi |Ψi 〉

.

Since we perform our calculation in a reduced space, the exact
wave functions |Ψf ,i 〉 are not known, only their projections onto
the model space. We are then confronted with the problem of how
to evaluate Ofi when only the model space wave functions are
known. In treating this problem, it is usual to introduce an
effective operator Oeff

fi , defined by requiring

Ofi = 〈Φf | Oeff |Φi 〉 .
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Effective Operators

Observe that Oeff is different from the original operator Ofi . The
standard empirical procedure is then to introduce some adjustable
parameters in Oeff

fi .
The perturbative expansion for the effective operator can then be
written as

〈Ψf | O |Ψi 〉 = 〈Φf | O |Φi 〉+ 〈Φf | OQ

e
H1 |Φi 〉+

〈Φf | Q
e

H1O |Φi 〉+ 〈Φf | OQ

e
H1

Q

e
H1 |Φi 〉+ . . .
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Many-Body Perturbation Theory

Main problems

1 Hard to extend beyond third-order. No systematic way of expanding.

2 No clear signs of convergence in terms of the interaction. Not even
in atomic or molecular physics.

3 Difficult to improve upon systematically, e.g., by inclusion of
three-body interactions and more complicated correlations.

4 However, enjoys considerable success in producing effective
interactions for finite nuclei and the shell model. Good agreement
with data.

5 Need non-perturbative resummation techniques for large classes of
diagrams. Coupled cluster is one possibility for A ≤ 100 at present.
Can also study Green’s function methods (Parquet class of
diagrams).
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Reminder of what we typically want to do

Find the lowest (≈ 10–50) solution of the eigenvalue problem for A
particles

H |Ψm(A)〉 = (T + V ) |Ψm(A)〉 = Em |Ψm(A)〉

and compute other properties with obtained wave functions. Use a
valence shell effective Hamiltonian Heff defined within a valence
P–space with a pertaining excluded Q–space:

P =
n∑

i=1

|ψi 〉 〈ψi | , Q =
∞∑

i=n+1

|ψi 〉 〈ψi | .

The model space Hamiltonian reads

PHeff P |Ψm〉 = P
(
H̃0 + (H1)eff

)
P |Ψm〉 = EmP |Ψm〉
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Shell-Model Basics

The choice of basis and the calculation of the matrix elements.

〈Φλ|PHeff P
∣∣Φλ′

〉
= E 0

λδλ,λ′ + 〈Φλ|P(H1)eff P
∣∣Φλ′

〉
Here we need to have defined the model space and its
effective interaction.

The treatment of giant matrices – diagonalization (Lanczos).
Based on the single-particle degrees of freedom which define a
model space, we can in turn set up an A-body Slater
determinant and try to diagonalize.
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Closed Shell Core: 88Sr, Model Space Example

Q–space: N ≤ 50

d+
5/2 0.00 MeV

s+
1/2 1.26 MeV

d+
5/2

2.23 MeV

g+
7/2 2.63 MeV

h−11/2 3.5 MeV

P–space for particles

Q–space: N > 82

Q–space: Z < 38

p−1/2 0.00 MeV

g+
9/2

0.9 MeV

P–space for particles

Q–space: Z > 50
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Dimensionalities

Solution of the Schrödinger eq. for N nucleons in a valence P–space =⇒ Numerous to
infinite degrees of freedom. Number of basic states for the shell model calculation in
the Sn isotopes with the single–particle orbits and using the m-scheme: 1d5/2, 0g7/2,
1d3/2, 2s1/2 and 0h11/2

System Dimension System Dimension
102Sn 36 110Sn 1 853 256
103Sn 245 111Sn 3 608 550
104Sn 1 504 112Sn 6 210 638
105Sn 7 451 113Sn 9 397 335
106Sn 31 124 114Sn 12 655 280
107Sn 108 297 115Sn 15 064 787
108Sn 323 682 116Sn 16 010 204
109Sn 828 422
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More on Dimensionalities

Using 100Sn as closed shell core as soon as we add protons the
dimension grows dramatically

System Dimension System Dimension
104Sn ≈ 1.5 · 103 112Sn ≈ 6.2 · 106

108Sn ≈ 3.2 · 105 116Sn ≈ 1.6 · 107

104Sb ≈ 6.5 · 103 112Sb ≈ 1.1 · 108

108Sb ≈ 3.2 · 106 116Sb ≈ 1.9 · 109
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Even more on Dimensionalities

Huge dimensionalities in brute force no-core shell-model calcs

System 4 major shells 7 major shells
4He 4E4 9E6
8B 4E8 5E13
12C 6E11 4E19
16O 3E14 9E24

Shell-model codes can today reach dimensionalities of d ∼ 1010

basis states. Monte Carlo based shell-model codes can attack
problems with d ∼ 1015.
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Understanding the Shell Model

We always start with a ’vacuum’ reference state, the Slater determinant for the
believed dominating configuration of the ground state. Here, Helium as an example;
four particles with single-particle wave functions φi (xi )

Φ0 =
1√
4!

0BB@
φ1(x1) φ1(x2) φ1(x3) φ1(x4)
φ2(x1) φ2(x2) φ2(x3) φ2(x4)
φ3(x1) φ3(x2) φ3(x3) φ3(x4)
φ4(x1) φ4(x2) φ4(x3) φ4(x4)

1CCA
If this is it, we are staying at the Hartree-Fock level. We can however allow for a linear
combination of excitations beyond the ground state, viz., we could assume that we
include 1p-1h and 2p-2h excitations

Ψ2p−2h = (1 + T1 + T2)Φ0

T1 is a 1p-1h excitation while T2 is a 2p-2h excitation.
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Energy diagonalization of giant matrices: Lanczos iteration
Basic operator

H = one-particle + two–particle = H0 + V

= eV (N)

=
X

< j1m1j2m2|eV (N)|j3m3j4m4 > a†j1m1
a†j2m2

aj4m4
aj3m3

Example of effective m-scheme two–particle matrix elements outside the
Z = 50 N = 50 core

Type Spherical m–scheme
pp or nn 160 5274

pn 542 30105
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Shell Model and m-Scheme

In a second quantization representation a Slater determinant (SD) is given by

|SDν(N)〉 =
Y

(jm)∈ν
a†jm |0〉 ,

and the complete set is generated by distributing the N particles in all possible ways
throughout the basic one–particle states constituting the P–space. This is a very
efficient representation. A single |SD〉 requires only one computer word (32 or 64 bits)
and in memory a |SD〉 with N particles is given by

|SD〉 −→ (00111101010 · · ·| {z }
N1′s

),

where each 0 and 1 corresponds to an m–orbit in the valence P–space. Occupied

orbits have a 1 and empty orbits a 0.
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Shell Model and m-Scheme

Furthermore, all important calculations can be handled in Boolean algebra which is

very efficient on modern computers. The action of operators of the form a†αaβ or

a†αa†βaγaδ acting on an |SD〉 is easy to perform.

The m-scheme allows also for a straightforward definition of many-body operators
such as one–, two– and three–particle operators

a†αaβ ,

a†α1
a†α2

aβ1
aβ2

,

a†α1
a†α2

a†α3
aβ1

aβ2
aβ3

,

respectively, or generalized seniority operators. The seniority operators can be very

useful in preparing a starting vector for the Lanczos iteration process. This option is

not included in the program package.
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Shell Model and m-Scheme

The generalized seniority operators can then be written as

S† =
X

j

1√
2j + 1

Cj

X
m≥0

(−1)j−ma†jma†j−m

for seniority zero,

D†JM =
X

j≤j′,m,m′
(1 + δj,j′ )−1/2βj,j′ 〈jmj ′m′ |JM〉 a†jma†

j′m′

for seniority two. The coefficients Cj and βjj′ can be obtained from the a chosen

two-particle system such as the 130Sn ground state and the excited states, respectively.
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Shell Model and m-Scheme

We can also define a seniority four operator

G(n1, j1, n2, j2; J,M) =
n

D†n1,j1
D†n2,j2

o
J.M=0

=
X
ν1...ν4

gJM
ν1...ν4

a†ν1
a†ν2

a†ν3
a†ν4

and a seniority six operator

I (n1, j1, (n2, j2, n3, j3)j23; J,M) =
˘

Dn1,j1 G(n2, j2, n3, j3; j23)
¯

J,M=0

=
X
ν1...ν6

gJM
ν1...ν6

a†ν1
a†ν2

a†ν3
a†ν4

a†ν5
a†ν6

Finally, our shell-model code allows also for the inclusion of effective and real
three-body interactions. This version is not included in the program package.
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Lanczos Iteration

Outline of the algorithm:

We choose an initial Lanczos vector |lanc0〉 as the zeroth order approximation to
the lowest eigenvector. Our experience is that any reasonable choice is
acceptable as long as the vector does not have special properties such as good
angular momentum. That would usually terminate the iteration process at too
early a stage.

The next step involves generating a new vector through the process
|newp+1 >= H|lancp >. Throughout this process we construct the energy
matrix elements of H in this Lanczos basis. First, the diagonal matrix elements
of H are then obtained by

〈lancp |H |lancp〉 = 〈lancp | newp+1〉 ,
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Lanczos Iteration

The new vector |newp+1〉 is then orthogonalized to all previously calculated
Lanczos vectors

˛̨̨
new

′
p+1

E
= |newp+1〉 − |lancp〉 · 〈lancp | newp+1〉 −

p−1X
q=0

|lancq〉 · 〈lancq | newp+1〉 ,

and finally normalized

|lancp+1〉 =
1rD

new
′
p+1

˛̨̨
new

′
p+1

E ˛̨̨new
′
p+1

E
,

to produce a new Lanczos vector.
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Lanczos Iteration

The off–diagonal matrix elements of H are calculated by

〈lancp+1|H |lancp〉 =
D

new
′
p+1

˛̨̨
new

′
p+1

E
,

and all others are zero.

After n iterations we have an energy matrix of the form8>>>>><>>>>>:

H0,0 H0,1 0 · · · 0
H0,1 H1,1 H1,2 · · · 0

0 H2,1 H2,2 · · · 0
...

...
...

... Hp−1,p

0 0 0 Hp,p−1 Hp,p

9>>>>>=>>>>>;
as the p’th approximation to the eigenvalue problem.
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Lanczos Iteration

The number p is a reasonably small number and we can diagonalize the matrix by
standard methods to obtain eigenvalues and eigenvectors which are linear
combinations of the Lanczos vectors.

This process is repeated until a suitable convergence criterium has been reached.

In this method each Lanczos vector is a linear combination of the basic |SD〉 with

dimension n. For n ≈ 106 − 109, as in our case of interest. Here is one of the

important difficulties associated with the Lanczos method. Large disk storage is

needed when the number of Lanczos vector exceeds ≈ 100. Another difficulty is found

in the calculation of |newp+1 >= H|lancp > when n > 106.
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Problems – Lanczos iteration

The main cpu time–consuming process

H |qi 〉 = |p〉

due to the large number of non-diagonal matrix elements

H |qi 〉 =
X
ν,µ

C i
ν 〈SDµ|H |SDν〉

However, each individual matrix element is easy to calculate

Examples:

Type 122Sn 116Sn
Dimension ≈ 2 · 106 ≈ 16 · 106

non-diag. elem ≈ 4.3 · 108 ≈ 1.2 · 109
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Problems – Lanczos iteration

The matrix elements are needed at every Lanczos iterations Too many
non–diagonal two–particle matrix elements to be calculated and saved. Must be
recalculated at each iteration

Numerical roundoff errors requires orthogonalization of all Lanczos vectors. All
Lanczos vectors may be kept during the process Slow convergence requires large
number of Lanczos vectors (≥ 100)

Due to numerical roundoff errors symmetry properties like angular momentum J
are destroyed through the process. However, The final converged eigenvectors
have the symmetry properties given by the total Hamiltonian H.
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Selected Results

130Sn 128Sn
Jπ Exp. Jπ Theory Jπ Exp. Jπ Theory

(2+) 1.22 2+ 1.46 (2+) 1.17 2+ 1.28
(4+) 2.00 4+ 2.39 (4+) 2.00 4+ 2.18
(6+) 2.26 6+ 2.64 (6+) 2.38 6+ 2.53

126Sn 124Sn
Jπ Exp. Jπ Theory Jπ Exp. Jπ Theory

2+ 1.14 2+ 1.21 2+ 1.13 2+ 1.17
4+ 2.05 4+ 2.21 4+ 2.10 4+ 2.26

6+ 2.61 6+ 2.70
122Sn 120Sn

Jπ Exp. Jπ Theory Jπ Exp. Jπ Theory

2+ 1.14 2+ 1.15 2+ 1.17 2+ 1.14
4+ 2.14 4+ 2.30 4+ 2.19 4+ 2.30
6+ 2.56 6+ 2.78 6+ 2.86

118Sn 116Sn
Jπ Exp. Jπ Theory Jπ Exp. Jπ Theory

2+ 1.22 2+ 1.15 2+ 1.30 2+ 1.17
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Seniority Analysis

Seniority v = 0 overlap |〈ASn; 0+|(S†)
n
2 |0̃〉|2 and the seniority v = 2 overlaps

|〈ASn; Jf |D†JM (S†)
n
2
−1|0̃〉|2 for the lowest–lying eigenstates of 128−120Sn.

A=128 A=126 A=124 A=122 A=120

0+
1 0.96 0.92 0.87 0.83 0.79

2+
1 0.92 0.89 0.84 0.79 0.74

4+
1 0.73 0.66 0.44 0.13 0.00

4+
2 0.13 0.18 0.39 0.66 0.74

6+
1 0.81 0.85 0.83 0.79 0.64
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Partial Waves and Spectra

2+
1 − 0+

1 excitation energy for the even tin isotopes 130−116Sn for various approaches
to the effective interaction.

116Sn 118Sn 120Sn 122Sn 124Sn 126Sn 128Sn 130Sn
Expt 1.29 1.23 1.17 1.14 1.13 1.14 1.17 1.23
Veff 1.17 1.15 1.14 1.15 1.14 1.21 1.28 1.46
G -matrix 1.14 1.12 1.07 0.99 0.99 0.98 0.98 0.97
1S0 G -matrix 1.38 1.36 1.34 1.30 1.25 1.21 1.19 1.18
No 1S0 & 3P2 in G 0.15 -0.32 0.02 -0.21
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Shell-Model Studiesof Nuclei around A = 132

Third-order effective interaction with G -matrix for 132Sn and
effective interaction consisting of a model space with

1 (0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2)Z−50 for proton particles

2 (0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2)N−82 for neutron holes.

3 The wave functions for N ≥ 82 were obtained with the same
model space for protons as above and with a model space for
neutrons of (0h9/2, 1f7/2, 1f5/2, 2p3/2, 2p1/2, 0i13/2)N−82
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Spectra

Results: 132Te

Jπ Experiment CD-Bonn
0+

1 0.0 0.0
2+

1 0.97 0.95
(2)+

2 1.66 1.64
4+

1 1.67 1.54
6+

1 1.77 1.68
0+

2 1.70
(2)+

3 1.79 1.93
(7)−1 1.92 1.88
(5)−1 2.05 2.01

4−1 2.12

Results: 134Te

Jπ Experiment CD-Bonn
0+

1 0.0 0.0
2+

1 1.28 1.21
4+

1 1.57 1.48
6+

1 1.69 1.61
6+

2 2.40 2.17
2+

2 2.46 2.45
4+

2 2.55 2.45
1+

1 2.63 2.41
3+

1 2.68 2.54
5+

1 2.73 2.54
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Results: Magnetic Moments

Nuclide Jπ Experiment Effective Free proton neutron
134Sn 2+ −0.469 −0.745 0 −0.469
130Sn 2+ −0.275 −0.385 0 −0.275
128Sn 2+ −0.253 −0.343 0 −0.253
126Sn 2+ −0.262 −0.355 0 −0.262
124Sn 2+ −0.3(2) −0.270 −0.364 0 −0.270
136Te 2+ 0.695 0.544 0.846 −0.151
134Te 2+ 1.724 1.035 1.724 0
132Te 2+ 0.70(10) 0.975 0.575 1.027 −0.052
130Te 2+ 0.59(7) 0.693 0.360 0.806 −0.113
134Xe 2+ 0.708(14) 0.825 0.541 0.886 −0.061
136Xe 2+ 1.53(9) 1.823 1.165 1.823 0
138Xe 2+ 0.775 0.623 0.912 −0.137
138Ba 2+ 1.44(22) 2.00 1.52 2.00 0
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