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Definitions and notations

We have assumed that the interacting part of the Hamiltonian can be approximated
by a two-body interaction. This means that our Hamiltonian is written as

H0+Hlfzh+ZVru (1)

i<j=1
with
N N
=S hi=(t(r) + u(r) @
i=1 i=1

The onebody part u(r;) is normally approximated by a harmonic oscillator potential or
the Coulomb interaction in case of electronic systems. However, other potentials are
fully possible, such as one derived from the self-consistent solution of the Hartree-Fock
equations.

Note: | use N for the number of particles.
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Definitions and notations

Our Hamiltonian is invariant under the permutation (interchange) of two particles.
Since we deal with fermions however, the total wave function is antisymmetric. Let P
be an operator which interchanges two particles. Due to the symmetries we have
ascribed to our Hamiltonian, this operator commutes with the total Hamiltonian,

[A,P] =0,
meaning that Wy (rq,r2,...,ry) is an eigenfunction of P as well, that is
PiWa(r,ra, .o iy e ty) = BYA(r, 12,y s T,

where 3 is the eigenvalue of P. We have introduced the suffix ij in order to indicate
that we permute particles i and j. The Pauli principle tells us that the total wave

function for a system of fermions has to be antisymmetric, resulting in the eigenvalue

B=-1
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Definitions and notations

In our case we assume that we can approximate the exact eigenfunction with a Slater
determinant

Ya(r1) Yalr2) ... ... vYa(rw)

1 | ¥s(r) () ... ... a(rw)
¢(r1,r2,...,rN,a,,8,...,J):W ,

Yo(r) wolr2) o oo ts(rn)

where r; stand for the coordinates and spin values of a particle i and o, 3, ..., are

quantum numbers needed to describe remaining quantum numbers.
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Definitions and notations

The single-particle function 1 (r;) are eigenfunctions of the onebody Hamiltonian h;,
that is

hi = h(r;) = t(r;) + u(r;),
with eigenvalues
hita(ri) = (t(r;) + u(ri)va(ri) = eatpa(r;).
The energies £, are the so-called non-interacting single-particle energies, or
unperturbed energies. The total energy is in this case the sum over all single-particle
energies, if no two-body or more complicated many-body interactions are present. In
many nuclear applications these unperturbed energies are the harmonic oscillator

energies.
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Definitions and notations

Let us denote the ground state energy by Eg. According to the variational principle we
have

Eo < E[®] = /¢*H¢dT

where @ is a trial function which we assume to be normalized

/tb*d)dr =1l

where we have used the shorthand d7 = dridr, ... dry.
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Definitions and notations

In the Hartree-Fock method the trial function is the Slater determinant of Eq. (5)
which can be rewritten as

Y(ry,r, ...y, 0, 3,...,v) = %. Z(_)P"A’wa(h)lﬂﬁ(m) —u(ry) = VNLAD,
‘P
(3)

where we have introduced the antisymmetrization operator A defined by the

summation over all possible permutations of two nucleons.
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Definitions and notations

It is defined as 0
_ = _\Pp
A= S, )
P
with p standing for the number of permutations. We have introduced for later use the
so-called Hartree-function, defined by the simple product of all possible single-particle

functions
Sp(ri,ra, ..y, 000, v) = Ya(r)ys(r2) . o (ry).
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Definitions and notations

Both I-70 and I-71 are invariant under all possible permutations of any two particles and
hence commute with A
[Ho, A] = [H1, A] = 0. (5)

Furthermore, A satisfies

A2 = A, (6)

since every permutation of the Slater determinant reproduces it.
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Definitions and notations

The expectation value of I—Alo
/cb*ﬁodadT: N!/d>,*_,AFIOA¢HdT

is readily reduced to
/¢*Ho¢dr: N!/@*HHOA¢HdT,
where we have used egs. (5) and (6). The next step is to replace the

antisymmetrization operator by its definition Eq. (3) and to replace Ho with the sum
of one-body operators

N
/¢*g0¢dT _ ZZ(—)”/QD*HH,-IADCDHdr
i=1 p
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Definitions and notations

The integral vanishes if two or more particles are permuted in only one of the
Hartree-functions ® 4 because the individual single-particle wave functions are
orthogonal. We obtain then

N
/¢*Floq>dT = Z/¢*HE;¢HdT.
=1

Orthogonality of the single-particle functions allows us to further simplify the integral,
and we arrive at the following expression for the expectation values of the sum of
one-body Hamiltonians

~ N ~
/d>*Hod>dT = Z/wﬁ(r)hwu(r)dr. (7)
p=1
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Definitions and notations

We introduce the following shorthand for the above integral
(ultl) = [ 7o),

and rewrite Eq. (7) as
N

[ & fuodr =S ulbin). ®)

p=1
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Definitions and notations

The expectation value of the two-body Hamiltonian is obtained in a similar manner.
We have

/¢*Hl¢dr - N!/ 5 AR Ay dr,

which reduces to
N
/¢*H1¢d7': Z Z(—)P/®LV(r,-j)P¢>HdT,
i<j=1 p

by following the same arguments as for the one-body Hamiltonian.
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Definitions and notations

Because of the dependence on the inter-particle distance r;;, permutations of any two
particles no longer vanish (Slater’s rule), and we get

N
/¢*H1¢dT: > /¢,*4Vr,-j)(1— Pj)®udr.
i<j=1

where Pj; is the permutation operator that interchanges nucleon i and nucleon j.

Again we use the assumption that the single-particle wave functions are orthogonal.
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Definitions and notations

We obtain

N 1 N N
/¢*H1¢d‘r = — Z Z |:/ 1/Jl’i(r,-)1/;;(rj)V(rg)wu(r;)w,,(rj)dr,-rj
2 p=1lv=1 (9)

= [ UV i
The first term is the so-called direct term. It is frequently also called the Hartree term,

while the second is due to the Pauli principle and is called the exchange term or just

the Fock term. The factor 1/2 is introduced because we now run over all pairs twice.
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Definitions and notations

The last equation allows us to introduce some further definitions. The single-particle
wave functions %, (r), defined by the quantum numbers p and r (recall that r also
includes spin degree) are defined as the overlap

Ya(r) = (rla).
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Definitions and notations

We introduce the following shorthands for the above two integrals

(wv|V|pv) :/w,’i(n)%(rj)V(rg)wu(ri)%(rj)drirj,

and

(| Vv = / W)V (1o (1 )by (v .
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Definitions and notations

The direct and exchange matrix elements can be brought together if we define the
antisymmetrized matrix element

(| V|pv)as = (| V|pv) — (pv|Vvp),
or for a general matrix element

(wv|V|oT)as = (pv|V|oT) — (pv|V|To).
It has the symmetry property

(| VioT)as = —(u|VITo)as = —(vpu|V]oT)as-
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Definitions and notations

The antisymmetric matrix element is also hermitian, implying
(v|VleT)as = (o7|V|pv) as.
With these notations we rewrite Eq. (9) as

N 1 N N
/¢*H1¢d7 = 220D wlVim)as. (10)

p=1lv=1
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Hartree-Fock equations

Use Euler-Lagrange equations and introduce N? Lagrange multipliers which we denote
by €,v, we can write the variational equation for the energy functional as

N N
6E7226#V5/1/1;1/JV:O.

p=lv=1

For the orthogonal wave functions v, this reduces to

N
SE — Zeu(s/zp;w =0.
p=1
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Hartree-Fock equations

We can then obtain the standard Hartree-Fock equations

1 N
[—2V,? + u(r) + Z/zﬁﬁ(fj)V(fij)wu(rj)dU] Y (xi)
v=1

N
> / w;(rj)V(rg)wu(r,-)drj} Do (1) = eutu(ri).
v=1

Not practical for numerical computations.
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Hartree-Fock equations

We prefer to expand the single-particle function in terms of an oscillator basis

'wa = Z Caa¢oc7

a=0
where a and « represent the relevant single-particle wave functions and ¢ are the
harmonic oscillator functions.
We then vary the coefficients C,o. This means that we can precalculate all matrix

elements (one-body and two-body) in the basis ¢q.
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Hartree-Fock equations, Exercise

Insert the basis

M
TS Z ChiaPa,

a=0

in the Energy functional (assume a truncation in M)

E0] = S (hlho(A)Ih) + 5 30 5" (huhel Vi ha)as.

h h hy

and find the single-particle Hartree-Fock equations.
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Reminder from Lecture Il: Vjow_«

The A—body Hamiltonian H is defined as
1A A
H= ="K+ > View_k(i.J)-
2m 4 —
i=1 i<j
Write internal kinetic energy as
A ) A
1 k¢ k; - k;
Tn=T—Tem. =(1-= e ——13
i em = A);Qm

The introduction of an additional two-body term yields a modified two-body

interaction
A Kk - k;
HI = Vlow—k aF Vc.m. == ZJ: (Vlow—k(ivj) - mAJ> .

This interaction is in turn written out in terms of harmonic oscillator elements.
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Reminder from Lecture Il: G-matrix

The A—body Hamiltonian H is defined as for the Vlow, case
1A A
H=—Y k2 G(i, ).
s 24+ 2 Gl

Internal kinetic energy as

The modified two-body interaction

H =G+ V. *i(G(i ) k"'kf)
1 c.m. - »J mA
This interaction is in turn written out in terms of harmonic oscillator elements.
Both the G-matrix codes and the Vi, _x codes list separately G or Vigw_k in
addition to the term % The last term has to be multiplied by hw/A in order to be

used in derivations of the effective interaction.
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Reminder from Lecture Il: No-core

The total Hamiltonian is

A
Hg => P
i=1

P
2m

A
1 mw?
+ 2mw2f}2] P+> P {v,»- Sy 3)2] P

—PHgcom P-

The two-body part of the center-of-mass Hamiltonian is listed separately and needs to
be multiplied by Aw/A. Since we only give the two-body part, you need to add the
Harmonic oscillator single-particle energies to this part and multiply the harmonic
oscillator single-particle energies with hw/A as well.
Note that the no-core Hamiltonian depends explicitely on the mass number A. The

- g 0 k;-k;
G-matrix and Viow_ include only a mass dependence via the term TAJ' The
Coulomb interaction can be included in all models.
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Two-body Matrix Elements |

The renormalized nucleon-nucleon interaction in an arbitrary two-particle basis in the
laboratory frame is given by

(ab|Hr|cd) = ((nalajatz,)(Nblbjbtz, ) IT2| Hr |(nclcjctz. ) (nalajatz, ) ITz) -

Here H; can be a G-matrix, it can be a no-core or Vlowk interaction. The two-body
state |ab) is implicitly coupled to good angular momentum J. The labels n, 4 number
all bound, resonant and discretized scattering states with orbital and angular momenta
(15...d>Ja...d)- Here these single-particle states will be the Hartree-Fock states.

In order to efficiently calculate the matrix elements, we introduce a two-particle
harmonic oscillator basis completeness relation

D laB)esl =1,

a<p

where the sum is not restricted in the neutron-proton case. We introduce the greek
single particle labels a, 3 for the single-particle harmonic oscillator states in order to

distinguish them from the latin single-particle labels Hartree-Fock states a, b
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Two-body Matrix Elements Il

The interaction can then be expressed in the complete basis is

Hi= Y > aB){aB|Hilv8) (],

alpBy<s

where the sums over two-particle harmonic oscillator states are infinite. The expansion
coefficients

(@BIH178) = ((alaaten ) (M laiate;) T2

Hr |(’7'y/’yj'ytzy )(nslsjstz )JTz> )

represent the interaction Hp in an antisymmetrized two-particle harmonic oscillator
basis, and may easily be calculated using the well known Moshinsky transformation

coefficients.
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Two-body Matrix Elements Il

The matrix elements are calculated numerically up to N harmonic oscillator two-body
states

N N
(ablHiled) = > > " (ablaB)(aB|Hi|v8)(vd|cd).

aspy<s
The two-particle overlap integrals (ab|a3) read

(ale) (blB) — (=1)" =I5 (a| ) (blov)
(1 +38ap)(1 + 0ap)

(ablaf) =

for identical particles (proton-proton or neutron-neutron states) and
(ablaf) = (ala)(b|B)

for the proton-neutron case.

CENS: A Computational Environment for Nuclear Structure Lecture Set Ill: Many-body theories



Wave Operator

The wave operator Q in Rayleigh-Schrodinger perturbation theory can be ordered in
terms of the number of interactions with the perturbation H;

Q=1+00 4+0@ 4 |

where Q(") means that we have n H; terms. Explicitly, the above equation reads

H-: reY H- H: &
Qpa) = +z' Gl B [ ZI AT

a =& (ea —ci)(ea —&))

|i) \Hl |1/1,a><1/15| Hi [9a)
Z o —€i)(ea —€p)

where ¢ are the unperturbed energies of the P-space
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Wave Operator

The first-order part of the wave operator

ZI) i| Hi |ha)

o — €

where € are the unperturbed energies. How does it look like in a diagrammatic form

with a two-body interaction?
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MBPT

First-order diagrams building up the wave operator
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Perturbation Theory

Order by order perturbation theory in terms of the renormalized

interaction.
F 24
2-7 2-8

)
i
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Resumming Diagrams

Define the following

VB = ((12)4] v |(34))

(13] _ Ay 3 B S [12]
V1234J—Z(—)Jl+ﬂhL = {j2 i 7 }V1234J
J/

14 -1 a2 Jaon J 12
V1[23LJ:Z(—)JI+“+J+2BJ’ { o S }V1[23]4J

7 J2
[14] _ 2it2p423 92 ) Ja 1 J [13]
Vissay = D (D)2 {ja 2 J }V1234J
Jl

Lecture Set Ill: Many-body theories
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MBPT

Coupling Order by Pictures

1 2 1 2
3 4 8 4
-
(a) (b) (c)

CENS: A Computational Environment for Nuclear Structure Lecture Set Ill: Many-body theories



MBPT

Particle-Particle and Hole-Hole Correlations

Summation of diagrams in the [12] channel, a more general
G-matrix 2 _ ) 2 _ 2
12 12 12 12
M23as = T21a3) = —T21305 = 1243,
S=¢1+erx=€e3+¢e4

r[12] — v[12] + V[12](gg)r[l2]

12 12
gh2 _ 1[>p ] _ Q}[lh :

S—€5—€Ept+1) S—E5—Eg— 1N
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Examples

1 2 1 2 1 2
,,,,,,,,,,,,, I
p q a pry Mo
r w
3 4 3 4 3 4
(@ (b) (c)
1 2
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MBPT

Examples: Analytic Expression
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Particle-Hole Diagrams

Screening corrections and vertex renormalization, the equations for
the [13] and [14] channels

13 13 13] 13
r[123]4J( = 1[2311J + Z V[ 12phs9 Gt th3]4J(t)

14 14 14 14
r[12?}4J( ) - 1[23]4J Z V[ ]Jg[14] rL 3]4 ( )
ph
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Particle-Hole Diagrams

Screening corrections and vertex renormalization, the equations for the [13] and [14]
channels
FIs] — y/113] | /(03] gg)rits)

riel — yia | /0 gg)riie)

t=¢€3—€1 =€ — ¢4

U=¢€1 —€4 =€3 — €2

[13] [13]

Q[13] _ Qph 7 th
t—ept+eptn t+ep—ep—m

14] [14]

gl — Qph th

u—6p+5h+m_ u+teéep—ep—m
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Particle-Hole Examples

¢7 o U T

gy

r Yy f&y\;

q 7777b7 q A L

1 1 L -
(a) (b) (c) (d)
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Particle-Hole Examples
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Particle-Hole Examples
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Effective Operators

In Rayleigh-Schrodinger perturbation theory, the effective
interaction Heg can be written out order by order in the interaction
Hy as

PH.g P = PH1P + PngHlp + PH19H19H1P + ...,
e e e

Here we have defined e = w — Hp, where w is the so-called starting
energy, defined as the unperturbed energy of the interacting
particles. Similarly, the exact wave function |W,) can now be
written in terms of the model space wave function as

Va) = [0a) + H1 [00) + THL Ty 00) + ..
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Effective Operators

In studies of for example nuclear transitions such as beta decay,
the quantity of interest is the transition matrix element between an
initial state |W;) and a final state |W¢) of an operator O defined as

(Ve O|V;) ‘
V(VEVE) (W)

Since we perform our calculation in a reduced space, the exact
wave functions |W¢ ;) are not known, only their projections onto
the model space. We are then confronted with the problem of how
to evaluate Of when only the model space wave functions are
known. In treating this problem, it is usual to introduce an
effective operator Oelﬂ, defined by requiring

fi =

Ofi = (Of| Ot |®)) .
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Effective Operators

Observe that O.g is different from the original operator Of. The
standard empirical procedure is then to introduce some adjustable

parameters in O?,-ff.
The perturbative expansion for the effective operator can then be

written as
Q
(Ve O|V;) = (9| O |®;) + (Df] O;Hl |®;) +

(P ngo |®i) + (P O%ngl'/l D) + ...
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HF
MBPT
SM

Many-Body Perturbation Theory

Main problems

© Hard to extend beyond third-order. No systematic way of expanding.

@ No clear signs of convergence in terms of the interaction. Not even
in atomic or molecular physics.

@ Difficult to improve upon systematically, e.g., by inclusion of
three-body interactions and more complicated correlations.

© However, enjoys considerable success in producing effective
interactions for finite nuclei and the shell model. Good agreement
with data.

© Need non-perturbative resummation techniques for large classes of
diagrams. Coupled cluster is one possibility for A < 100 at present.
Can also study Green's function methods (Parquet class of
diagrams).
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SM

Reminder of what we typically want to do

Find the lowest (~ 10-50) solution of the eigenvalue problem for A
particles

H |Wm(A)> = (T + V) |wm(A)> =Em |wm(A)>

and compute other properties with obtained wave functions. Use a
valence shell effective Hamiltonian H.g defined within a valence
P—space with a pertaining excluded Q—space:

P=3"l)wil, Q=D lwiwil.
i=1

i=n+1

The model space Hamiltonian reads

PHerP [Wm) = P (Fo + (Hu)err ) P Vim) = EnP Vi)
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Shell-Model Basics

@ The choice of basis and the calculation of the matrix elements.
(PA| PHerr P |®,r) = EQSy yv + (D] P(H)efr P |®)

Here we need to have defined the model space and its
effective interaction.

@ The treatment of giant matrices — diagonalization (Lanczos).
Based on the single-particle degrees of freedom which define a
model space, we can in turn set up an A-body Slater
determinant and try to diagonalize.
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SM

Closed Shell Core: 8Sr, Model Space Example

Q-space: Z > 50 Q-space: N > 82
iy ———— 3.5 MeV
910 2.63 MeV
93/2 0.9 MeV d;/.z 2.23 MeV
P-space for particles P-space for particles
sy T 1.26 MeV
DI 0.00 MeV d3, 0.00 MeV

Q-space: Z < 38 Q-space: N < 50
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Dimensionalities

Solution of the Schrodinger eq. for N nucleons in a valence P—space = Numerous to
infinite degrees of freedom. Number of basic states for the shell model calculation in
the Sn isotopes with the single—particle orbits and using the m-scheme: 1ds /5, 0g7/2,
1d3/2, 251/2 and 0h11/2

System | Dimension System Dimension
1025, 36 || T10Sn 1 853 256
1035 245 || 111Sp 3 608 550
1045, 1504 || 12Sn 6 210 638
1055, 7 451 || 113Sn 9 397 335
1065, 31124 || 114sn 12 655 280
1075 108 297 || !15Snp 15 064 787
1085, 323 682 || !16Snp 16 010 204
1095, 828 422
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SM

More on Dimensionalities

Using %9Sn as closed shell core as soon as we add protons the
dimension grows dramatically

System Dimension System Dimension
10%5n  ~15-10% M2Sn ~6.2-10°
1085h  ~3.2.10° M8Sp =~ 1.6-107
1045  ~6.5-103 112Sp =~ 1.1-108
1085p  ~3.2.10° 6Sp  ~1.9-10°
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SM

Even more on Dimensionalities

Huge dimensionalities in brute force no-core shell-model calcs

System 4 major shells 7 major shells
“He 4E4 9E6
8B 4E8 5E13
B¢ 6E11 4E19
160 3E14 OE24

Shell-model codes can today reach dimensionalities of d ~ 1

010

basis states. Monte Carlo based shell-model codes can attack

problems with d ~ 10%.
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SM

Understanding the Shell Model

We always start with a 'vacuum’ reference state, the Slater determinant for the
believed dominating configuration of the ground state. Here, Helium as an example;
four particles with single-particle wave functions ¢;(x;)

) ) (x3) (
dp= L | P2(x) ) (x3) (
Vval | ¢3(x1)  ¢a(x2)  ¢pa(x3)  p3(xa)
) ) palx3) ol
If this is it, we are staying at the Hartree-Fock level. We can however allow for a linear
combination of excitations beyond the ground state, viz., we could assume that we
include 1p-1h and 2p-2h excitations

Vopon=(14+ T1+ T2)®o

Ty is a 1p-1h excitation while T, is a 2p-2h excitation.
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Energy diagonalization of giant matrices: Lanczos iteration
Basic operator

H

one-particle 4+ two—particle = Hy + V
V(N)

Z < jimijama| V(N)|jzmsjamg > a}:ml aLm23j4m4aj3m3

Example of effective m-scheme two—particle matrix elements outside the
Z =50 N =50 core

Type Spherical  m-scheme
pp or nn 160 5274
pn 542 30105

CENS: A Computational Environment for Nuclear Structure Lecture Set Ill: Many-body theories



SM

Shell Model and m-Scheme

In a second quantization representation a Slater determinant (SD) is given by

5D, (M) = TT 4,10,

(m)ev

and the complete set is generated by distributing the N particles in all possible ways
throughout the basic one—particle states constituting the P—space. This is a very
efficient representation. A single |SD) requires only one computer word (32 or 64 bits)
and in memory a |SD) with N particles is given by
|SD) — (00111101010 - ),
N——————

N1’s

where each 0 and 1 corresponds to an m—orbit in the valence P—space. Occupied

orbits have a 1 and empty orbits a 0.
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SM

Shell Model and m-Scheme

Furthermore, all important calculations can be handled in Boolean algebra which is
very efficient on modern computers. The action of operators of the form a};ag or
aLaLawag acting on an |SD) is easy to perform.

The m-scheme allows also for a straightforward definition of many-body operators
such as one—, two— and three—particle operators

al,as,
aLl 322 ag,a8,,
al‘l aJ;42 aLs 931982983

respectively, or generalized seniority operators. The seniority operators can be very
useful in preparing a starting vector for the Lanczos iteration process. This option is

not included in the program package.
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Shell Model and m-Scheme

The generalized seniority operators can then be written as
1 .
st = Z ——CG; Z(—l)f’maT al
- Jm~j—m
; V2j+1 0

for seniority zero,

D}M = Z (1 aF (51-’1/)71/2@',‘,'/ (imj'm’ ‘JM) a}ma}‘,m,

i<y’ m,m’

for seniority two. The coefficients C; and S can be obtained from the a chosen

two-particle system such as the 139Sn ground state and the excited states, respectively.

CENS: A Computational Environment for Nuclear Structure Lecture Set Ill: Many-body theories



SM

Shell Model and m-Scheme

We can also define a seniority four operator

G(n1,j1,n2,j2; J, M)

T pt
nsJ1 202 J g pm=0

— JM
= D &y wahalalal,
vy...v4

and a seniority six operator

(1,41, (2,42, N3, j3)j23; J, M) {Dn, j G(n2, 2, "37J'3;j23)}J’M:0

S g, alal,al at, 8l af
8u1...v690; A0y A3 A, g Aug
V6

Finally, our shell-model code allows also for the inclusion of effective and real
three-body interactions. This version is not included in the program package.
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Lanczos lteration

Outline of the algorithm:

@ We choose an initial Lanczos vector |lancp) as the zeroth order approximation to
the lowest eigenvector. Our experience is that any reasonable choice is
acceptable as long as the vector does not have special properties such as good
angular momentum. That would usually terminate the iteration process at too
early a stage.

@ The next step involves generating a new vector through the process
|newp11 >= H|lanc, >. Throughout this process we construct the energy
matrix elements of H in this Lanczos basis. First, the diagonal matrix elements
of H are then obtained by

(lancy| H |lancp) = (lancp| newpi1) ,
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Lanczos lteration

@ The new vector |new,11) is then orthogonalized to all previously calculated
Lanczos vectors

p—1
’
‘newp+1> = |newp+1) — |lancp) - (lancy| newpi1) — Z |lancq) - (lancq| newpy1) ,
q=0

and finally normalized

1 ’
|lancpi1) = ’newp+1> 3

’ ’
neWp+1 ‘ HEWP+1

to produce a new Lanczos vector.

CENS: A Computational Environment for Nuclear Structure Lecture Set Ill: Many-body theories



Lanczos lteration

@ The off-diagonal matrix elements of H are calculated by
’ !
(lancpy1| H|lancp) = <newp+1’ newp+1> ,

and all others are zero.

@ After n iterations we have an energy matrix of the form

Hoo Ho,1 0 cee 0

Ho1 Hix Hip oo 0

0 Hy1 Hop cee 0
Hp—1,p

0 0 0 Hp,p—1 Hp.p

as the p’'th approximation to the eigenvalue problem.
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Lanczos lteration

The number p is a reasonably small number and we can diagonalize the matrix by
standard methods to obtain eigenvalues and eigenvectors which are linear
combinations of the Lanczos vectors.

@ This process is repeated until a suitable convergence criterium has been reached.

In this method each Lanczos vector is a linear combination of the basic |SD) with
dimension n. For n &~ 108 — 10°, as in our case of interest. Here is one of the
important difficulties associated with the Lanczos method. Large disk storage is
needed when the number of Lanczos vector exceeds =~ 100. Another difficulty is found

in the calculation of |new,t1 >= H|lanc, > when n > 10°.

CENS: A Computational Environment for Nuclear Structure Lecture Set Ill: Many-body theories



Problems — Lanczos iteration
@ The main cpu time—consuming process
Hlgi) = |p)
due to the large number of non-diagonal matrix elements
Hlai) = > Cl (SDu| H|SDy)

v

However, each individual matrix element is easy to calculate

@ Examples:
Type 1225, 1165y
Dimension ~2-10° ~ 16 -10°
non-diag. elem ~43-108 | ~1.2-10°
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Problems — Lanczos iteration

@ The matrix elements are needed at every Lanczos iterations Too many
non—diagonal two—particle matrix elements to be calculated and saved. Must be
recalculated at each iteration

@ Numerical roundoff errors requires orthogonalization of all Lanczos vectors. All
Lanczos vectors may be kept during the process Slow convergence requires large
number of Lanczos vectors (> 100)

@ Due to numerical roundoff errors symmetry properties like angular momentum J
are destroyed through the process. However, The final converged eigenvectors
have the symmetry properties given by the total Hamiltonian H.
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Selected Results

CENS: A Computational Environment for Nuclear Structure

130G, 1285,
Jr Exp. J™ Theory J™ Exp. J™ Theory
(27) 122 2f 1.46 (2*) 117 2 1.28
(4t) 2.00 4 2.39 (4t) 2,00 4°F 2.18
(67) 226 67 264 (67) 238 67 253
%g, g,
Jr Exp. J™ Theory J™ Exp. J™ Theory
2+ 1.14 2°F 1.21 2+ 113 27 1.17
4t 2,05 4t 221 47 210 4t 226
6" 2.61 6" 2.70
g, g,
Jr Exp. J®™ Theory J™ Exp. J™ Theory
2+t 1.14 2% 1.15 2 1.17 27 1.14
4% 214 4T 230 4 219 4t 230
6" 256 6" 2.78 6" 2.86
I8g 65,
Jr Exp. J™ Theory J™ Exp. J™ Theory
2+ 122 2°F 1.15 2+ 1.30 -2 1.17
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Seniority Analysis

Seniority v = 0 overlap |(ASn; 0+|(5T)% |0)|2 and the seniority v = 2 overlaps
|{(ASn; Jf‘DjM(ST)%_1|6>|2 for the lowest-lying eigenstates of 126—120Gn.

A=128 A=126 A=124 A=122 A=120
01*' 0.96 0.92 0.87 0.83 0.79
21*' 0.92 0.89 0.84 0.79 0.74
41*' 0.73 0.66 0.44 0.13 0.00
42+ 0.13 0.18 0.39 0.66 0.74
6? 0.81 0.85 0.83 0.79 0.64
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Partial Waves and Spectra

2;r — Of excitation energy for the even tin isotopes 1301165 for various approaches
to the effective interaction.

1163!’1 IISSn IZOSn 122Sn 124Sn 1265n 1285n 1305n

Expt 129 1.23 117 114 113 114 117 1.23
Vo 1.17  1.15 1.14 115 114 121 128  1.46
G-matrix 1.14 112 1.07 099 099 098 098 0.97
1Sy G-matrix 138 136 134 130 1.25 1.21 1.19 1.18
No 1Sy & 3P, in G 0.15 -0.32 002 -0.21
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Shell-Model Studiesof Nuclei around A = 132

Third-order effective interaction with G-matrix for 132Sn and
effective interaction consisting of a model space with

Q (0g7/2, 1d52, 1d3/2,251/2,0h11/2)2*50 for proton particles
Q (0g7/2,1d5,5, 1d3/2,251/2,0h11/2)’v_82 for neutron holes.

© The wave functions for N > 82 were obtained with the same
model space for protons as above and with a model space for
neutrons of (0hg 5, 1175, 1f5 2, 2p3 2, 2Py /2, 0i13/2) "V 82
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Spectra

Results: 132Te Results: 134Te

J™  Experiment CD-Bonn J™  Experiment CD-Bonn
07 0.0 0.0 07 0.0 0.0
2f 0.97 0.95 2f 1.28 1.21
(2)5 1.66 1.64 47 1.57 1.48
47 1.67 1.54 67 1.69 1.61
65 1.77 1.68 65 2.40 2.17
05 1.70 25 2.46 2.45
27 1.79 1.93 45 2.55 2.45
O 1.92 1.88 1 2.63 2.41
(5); 2.05 2.01 37 2.68 2.54
47 2.12 b 2.73 2.54
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Results: Magnetic Moments

Nuclide J™ Experiment Effective Free proton neutron
13%5n 27 —0.469 —0.745 0 —0.469
130G, 2F —0.275 —0.385 0 —0.275
128Gy 2F —0.253 —0.343 0 —0.253
1265n 2+ —0.262 —0.355 0 —0.262
1245n 2+ -0.3(2) —0.270 —0.364 0 —0.270
136Te 2+ 0.695 0.544 0.846 —0.151
134Te  2F 1.724  1.035 1.724 0
12Te 2+ 0.70(10) 0975 0575 1.027 —0.052
130Te 2+ 0.59(7) 0.693 0.360 0.806 —0.113
134%e 2% 0.708(14) 0.825 0.541 0.886 —0.061
136xe 2% 1.53(9) 1.823 1.165 1.823 0
138%e 2% 0.775 0.623 0912 —0.137
Ry o 1.44(22) 2.00 1.52 2.00 0
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