

Nuclei as ppen quantum many body systems Witold Nazarewicz (Tennessee/Warsaw)

20th Chris Engelbrecht Summer School in Theoretical Physics 19 – 28 January 2009

National Institute for Theoretical Physics at Stellenbosch

Institute for Advanced Study, Stellenbosch, Western Cape, South Africa

Nuclei and Nucleonic Systems

Exotic nuclei, halos, nucleosynthesis and more

Rough Outline

- Introduction: nuclei as open systems
- Territory: nuclear landscape and the limits of nuclear existence
- Phenomena related to the openness
 - Coupling between structure and reactions
- Recent experimental highlights
- General comments on nuclear many-body theory
- Simple concepts
- Theoretical frameworks
 - Real-energy quantum mechanics (Hilbert Space)
 - Mean field perspective
 - Continuum shell model
 - Complex-energy quantum mechanics (Rigged Hilbert Space)
 - Resonant-state expansions
 - Gamow Shell Model and Complex Scaling
- Typical applications
 - Weakly bound and unbound nuclei
 - Fission
 - Hot nuclei and continuum level density
 - Other many-body systems; interdisciplinary aspects
- Perspectives

http://academic.sun.ac.za/workshop/

Introduction

Wikipedia:

An open quantum system is a quantum system which is found to be in interaction with an external quantum system, the environment. The open quantum system can be viewed as a distinguished part of a larger closed quantum system, the other part being the environment.

system, the environment. The open quantum system can be viewed as a distinguished part of a larger closed quantum system, the other part being the environment.

external quantum

Nuclear Decays

Alpha Decay

Gamow 1928

("pre-nuclear" era)

Spontaneous fission

1938 - Hahn & Strassmann1939 Meitner & Frisch1939 Bohr & Wheeler1940 Petrzhak & Flerov

- All elements heavier than A=110-120 are fission unstable!
- But... the fission process is unimportant for nuclei with A<230. Why?

Electromagnetic Decay

Emission of a γ -ray is caused by the interaction of the nucleus with an external electromagnetic field

- What are properties of neutron matter?
- What are the heaviest nuclei that can exist?

Prog. Part. Nucl. Phys. 59, 432 (2007)

Neutron number

Basic Equations

Time Dependent (Many Body) Schödinger Equation

Often impractical/impossible to solve but excellent starting point

Time Independent (Many Body) Schödinger Equation

 $\hat{H}\psi = E\psi$

Box boundary conditions (w.f. vanishes at large distances) Decaying boundary conditions Incoming or capturing boundary conditions Scattering boundary conditions

Absorbing boundary conditions

choice depends on physics case

Phenomena related to the Openness

Impact of scattering space on structural properties

 μ B R²/h²

1

¹¹Li: Borromean halo nucleus Z=3, N=8

⁹Li

n

n+n is unbound n+ ⁹Li is unbound but n+n+ ⁹Li is bound !

The Borromean Rings

²⁰⁸Pb: well bound heavy nucleus Z=82, N=126

0.000000000014 cm

Neutron Drip line nuclei

Spectra and matter distribution modified by the proximity of scattering continuum

Mass number

threshold is a branching point

۶ Z r

C.F. Moore et al., Phys. Rev. Lett. 17, 926 (1966)

