Simple Concepts and Estimates...
(continuation)



Width of a narrow resonance
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As initial conditions, let us assume that at t=0 the system is in the state ¢, That is
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If the perturbation is weak, in the first order,
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Furthermore, if the time variation of V is slow compared with exp(io,t), we may
treat the matrix element of V as a constant. In this approximation:

k(t) <¢k ’V‘¢O (1 ela)kot)

The probability for finding the system in state k at time t if it started from state O
at time t=0 is:
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The total probability to decay to a group of states within some interval labeled
by f equals:
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The transition probability per unit time is
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Since the function sin(x)/x oscillates very quickly except for
Xx~0, only small region around E, can contribute to this
integral. In this small energy region we may regard the
matrix element and the state density to be constant. This
finally gives:
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Two potential approach to tunneling

(decay width and shift of an isolated quasistationary state)
A. Gurvitz, Phys. Rev. A 38, 1747 (1988). A. Gurvitz et al., Phys. Rev. A69, 042705 (2004)
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|solated Breit-Wigner resonance; Fermi’'s golden rule

Final simple expressions for the width and energy shift:

E=Ey+A— T

2
r = SO B0 g (R ()
A= 160 (B)? [200k (R)Rex((” (R) — k

o =2m(Vy — Ey)/h



Improvement:
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0hy1/2 Gamow state: Ere=1.5MeV, I' =4.918 E-18 MeV
0.17 | 0.11 | 4.665 E-18 5%

1.55 0.02 4.87 E-18 1%

3.09 | 0.003 | 4.909 E-18 0.2%

25175 Gamow state: E,.s=1.5MeV, I' =6.695 E-14 MeV
0.26 0.06 | 6.577 E-14 2%

1.66 | 0.01 | 6.675 E-14 0.3%

3.24 | 0.001 | 6.692 E-14 0

0i13/0 Gamow state: E,.,=1MeV, I' =1.834 E-6 MeV
0.18 | 0.15 | 1.736 E-6 5%

1.45 04 1.814 E-6 1%

2.99 007 | 1.831 E-6 0.1%

1f5,0 Gamow state: Eres=1MeV, I' =9.271 E-2 MeV
0.18 | 0.13 | 8.998 E-2 3%

1.38 | 0.035 | 8.856 E-2 4%

2.96 | 0.005 | 8.373 E-2 10%




Low-lying dipole strength for weakly bound systems

Two-body case, 1-neutron halo
Bertulani and Baur, Nucl. Phys. A480, 615 (1988)

Nagarajan, Lenzi, Vitturi, Eur. Phys. J. A24, 63 (2005)
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It has maximum at
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Three-body case, 2-neutron halo
Pushkin, Jonson, and Zhukov, J. Phys. G 22, L95 (1996
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Quasistationary states and Gamow states



Quasistationary States

For the description of a decay, we demand that far from the force center
there be only the outgoing wave. The macroscopic equation of decay is

dN
=N N = Noe™

Nis a humber of radioactive nuclei, i.e., number of particles inside of sphere r=R:

N~ [ i



We should thus seek a solution of the form
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J.J. Thompson, 1884

G. Gamow, 1928 relation between decay width
and decay probability
The time dependent equation

Loy h?
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can be reduced by the above substitution to the stationary equation
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takes care of the discrete complex values of £

The boundary condition




Since the energy £is complex, the momentum 4 is also complex. Asymptotically
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Looks scary
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What is a physical interpretation of the asymptotic growth of the wave
function at large r? At any time 7,we find at a given distance from the
center those particles which were emitted at a previous time

t =ty —1r/v
However, on the account of the exponential time dependence, the amplitude
of the wave function at the center at the earlier time was greater than it is
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(the exponential temporal decrease of the wave function amplitude is complemented by
its exponential spatial increase, and the divergence of the resonance wave function
assures that the particle number is conserved)




Outgoing flux and width of the Gamow state
Humblet and Rosenfeld: Nucl. Phys. 26, 529 (1961)
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An extremely useful expression!




When can we talk about “existence” of an unbound system?

Ty, = |n2§, 7i=6.58-10"% MeV - sec

> A typical time
T, ~3-10"sec = 3babysec.  5ssociated with

the s.p. motion

T1/2 >> Ts.p.

——) [ <<1MeV




Baumann et al.,
ENAM’'08
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cross section (mb)
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the difference of mass excess of projectile and target

Extrapolates

very well!
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