
In principle, resonances and decaying particles are different entities. Usually, 
resonance refers to the energy distribution of the outgoing particles in a 
scattering process, and it is characterized by its energy and width. A decaying 
state is described in a time dependent setting by its energy and lifetime. Both 
concepts are related by:

This relation has been checked in 
numerous precision experiments.

U. Volz et al., Phys. Rev. Lett 76, 2862(1996)

See more discussion in
R. de la Madrid, 
Nucl. Phys. A812, 13 (2008)



Rigged Hilbert Space: the natural framework to formulateRigged Hilbert Space: the natural framework to formulate
quantum mechanics quantum mechanics 

Mathematical foundations in the 1960s by Gel’fand et al. who combined Hilbert space 
with the theory of distributions. Hence, the RHS, rather than the Hilbert space alone, is
the natural mathematical setting of Quantum Mechanics 

In mathematics, a rigged Hilbert space (Gel’fand triple, nested Hilbert space, 
equipped Hilbert space) is a construction designed to link the distribution and 
square-integrable aspects of functional analysis. Such spaces were introduced to 
study spectral theory in the broad sense. They can bring together the 'bound state' 
(eigenvector) and 'continuous spectrum', in one place.

I. M. Gel’fand and N. J. Vilenkin. Generalized Functions, vol. 4: Some 
Applications of Harmonic Analysis. Rigged Hilbert Spaces. Academic
Press, New York, 1964.

The resonance amplitude associated with the Gamow states is proportional to the 
complex delta function and such amplitude can be approximated in the near 
resonance region by the Breit-Wigner amplitude (Nucl. Phys. A812, 13 (2008)):

For a pedagogical description, see R. de la Madrid, Eur. J. Phys. 26, 287 (2005) 



Theoretical Approaches



Continuum Shell Model Continuum Shell Model --an old tool!an old tool!
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•N. Michel et al., Phys. Rev. C67, 054311 (2003)
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Other approaches





Complex Energy Treatment



n p

εF
εF

0

Unbound
states

Unbound
states

Discrete
(bound)
states

Discrete
(bound)
states

Gamow states of a finite potentialGamow states of a finite potential



Resonant (Gamow) statesResonant (Gamow) states

  

ˆ H Ψ = e - i G
2

Ê 
Ë 

ˆ 
¯ Y

Y 0,k( ) = 0, Y G r ,k( ) r Æ•æ Æ æ æ Ol kr( )

  
kn =

2m
=2 en - i

Gn

2
Ê 
Ë 

ˆ 
¯ 

complex pole
of the S-matrix

outgoing
solution

•Humblet and Rosenfeld, Nucl. Phys. 26, 529 (1961)
•Siegert, Phys. Rev. 36, 750 (1939)
•Gamow, Z. Phys. 51, 204 (1928)

Also true in many-channel case!



One-body basisOne-body basis

Berggren 
ensemble for a 
given jl channel:

Newton

Berggren 1968



Contour is discretized
Many-body Slater determinants (SD) are built

GSM Hamiltonian matrix is computed and diagonalized
(the matrix is complex symmetric!)

Gamow states and completeness relationsGamow states and completeness relations
T. Berggren, Nucl. Phys.  A109, 265 (1968); A389, 261 (1982)
T. Lind, Phys. Rev. C47, 1903 (1993) 

Particular case: Newton completeness relation



Selection of the manySelection of the many--body polesbody poles

4 neutrons in sd shell

Resonances
do not depend
on the contour





Neutron halo densityNeutron halo density

GSM+Vlow-k: G. Hagen et al., Phys. Rev. C 73 (2006) 064307



Generalized Generalized VariationalVariational PrinciplePrinciple
(a complex extension of the usual (a complex extension of the usual variationalvariational principle)principle)

N. Moiseyev, P.R. Certain, and F. Weinhold, Mol. Phys. 36, 1613 (1978).
N. Moiseyev,  Phys. Rep. 302, 212 (1998) 

is stationary around any eigenstate

That is,

It should be noted that the complex variational principle is  a stationary principle rather 
than an upper of lower bound for either the real or imaginary part of the complex 
eigenvalue. However, it can be very useful when applied to the squared modulus of 
the complex eigenvalue. Indeed, 



Example: GSM+DMRG calculations for Example: GSM+DMRG calculations for 77LiLi
J. J. RotureauRotureau et al., et al., Phys. Rev. C 79, 014304 (2009)



Threshold anomaly
E.P. Wigner, Phys. Rev. 73, 1002 (1948), the Wigner cusp
G. Breit, Phys. Rev. 107, 923 (1957)
A.I. Baz’, JETP  33, 923 (1957)
A.I. Baz', Ya.B. Zel'dovich, and A.M. Perelomov, Scattering Reactions and Decay 

in Nonrelativistic Quantum Mechanics, Nauka 1966
A.M. Lane,  Phys. Lett. 32B, 159 (1970)
S.N. Abramovich, B.Ya. Guzhovskii, and L.M. Lazarev, Part. and Nucl. 23, 305 (1992).

• The threshold is a branching point.
• The threshold effects originate in conservation of the flux. 
• If a new channel opens, a redistribution of the flux in other open 

channels appears, i.e. a modification of their reaction cross-sections.
• The shape of the cusp depends strongly on the orbital angular 

momentum.
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Threshold anomaly (cont.)
pion-nucleus scattering
R.K. Adair, Phys. Rev. 111, 632 (1958)
A. Starostin et al., Phys. Rev. C 72, 015205 (2005)

electron-molecule scattering
W. Domcke, J. Phys. B 14, 4889 (1981)

electron-atom scattering
K.F. Scheibner et al., Phys. Rev. A 35, 4869 (1987)

ultracold atom-diatom scattering
R.C. Forrey et al.,  Phys. Rev. A 58, R2645 (1998)

Low-energy nuclear physics
•charge-exchange reactions 
•neutron elastic scattering
•deuteron stripping

Studied experimentally and theoretically in various areas of physics:

The presence of cusp anomaly could provide structural information about 
reaction products. This is of particular interest for neutron-rich nuclei



C.F. Moore et al.
Phys. Rev. Lett. 17, 926 (1966)

Coupling between analog states
in (d,p) and (d,n)



C.F. Moore et al., Phys. Rev. Lett. 17, 926 (1966)



Anomalies appear at calculated 
thresholds (many-body S-
matrix unitary)

Scattering continuum essential

5He+n       6He

6He+n       7He

WS potential depth decreased to 
bind 7He. Monopole  SGI strength 
varied

Overlap integral, basis 
independent!
Overlap integral, basis 
independent!

N. Michel et al. PRC 75, 0311301(R) (2007)

see also Nucl. Phys. A 794, 29 (2007)



Many-body OQS calculations correctly predict the Wigner-
cusp and channel-coupling threshold effects. This 
constitutes a very strong theoretical check for the GSM 
approach.

The spectroscopic factors defined in the OQS framework 
through the norm of the overlap integral, exhibit strong 
variations around particle thresholds. Such variations cannot 
be described in a standard CQS SM framework that applies 
a "one-isolated-state" ansatz and ignores the coupling to the 
decay and scattering channels. In the GSM model 
calculations, the contribution to SF from a non-resonant 
continuum can be as large as 25%.



• The non-resonant continuum is important for the spectroscopy of weakly bound nuclei 
(energy shifts of excited states, additional binding,…)

• SFs, cross sections, etc.,  exhibit a non-perturbative and non-analytic behavior (cusp 
effects) close to the particle-emission thresholds. These anomalies strongly depend on 
orbital angular momentum

• Microscopic CSM (GSM) fully accounts for channel coupling

Timofeyuk, Blokhintsev, Tostevin, Phys. Rev. C68, 021601 (2003)
Non-Borromean two-neutron halos



Complex Scaling
Introduced in the early 1970s in atomic physics to guarantee 
that wave functions and resonances are square integrable.

Uniform complex
scaling

The transformed Hamiltonian is no longer hermitian as it acquires a complex 
potential. However, for a wide class of  local and nonlocal potentials, called dilation-
analytic potentials,  the so-called ABC is valid:

•The bound states of h and hθ are the same;
•The positive-energy spectrum of the original Hamiltonian h is rotated down by an 
angle of 2θ into the complex-energy plane;
•The resonant states  of  h with eigenvalues En satisfying the condition |arg(En)|<2θ
are also eigenvalues hθ and  their wave functions are square integrable.





Myo, Kato, Ikeda, PRC C76, 054309 (2007)



Helium resonances in the Coupled Cluster approach and 
Berggren basis

Complex coupled-cluster approach to an ab-initio description of open quantum systems, G. 
Hagen, D. J. Dean, M. Hjorth-Jensen and T. Papenbrock, Phys. Lett. B656, 169 (2007)


