Reflections upon the thermodynamic limit of the Lipkin model

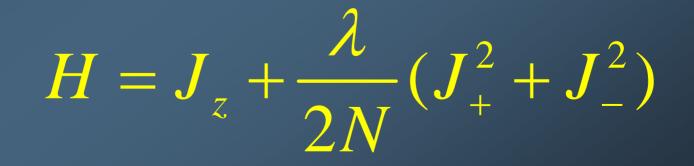
Dieter Heiss Hendrik Geyer Frederik Scholtz

all of Stellenbosch University

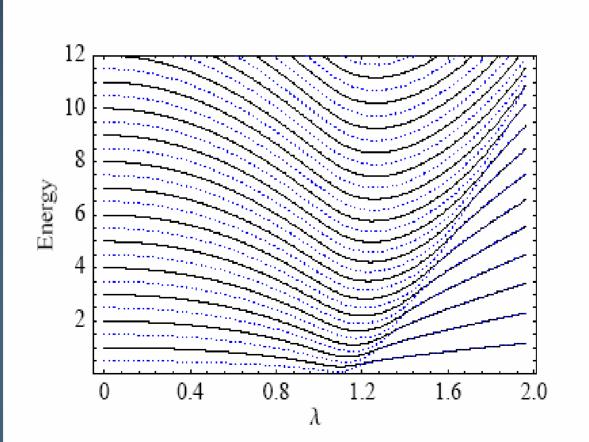
The Lipkin model:

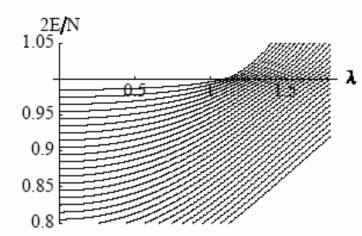
N Fermions occupying 2 degenerate levels, degeneracy at least N-fold.Interaction lifts or lowers a Fermion pair

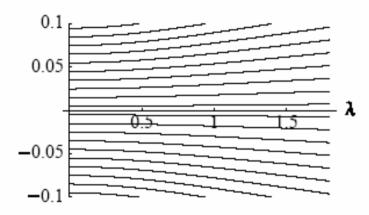
as a consequence: model is reducible into *even* or *odd* N

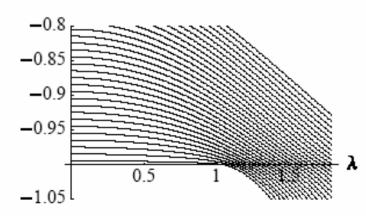


model shows phase transition at $\lambda = 1$ including *symmetry breaking* in that for $\lambda > 1$ a 'deformed' phase occurs where even and odd *N* become degenerate



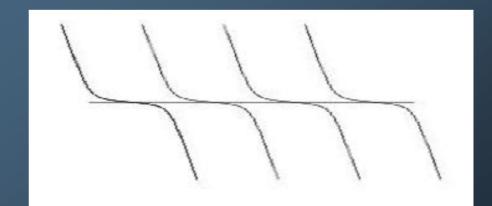






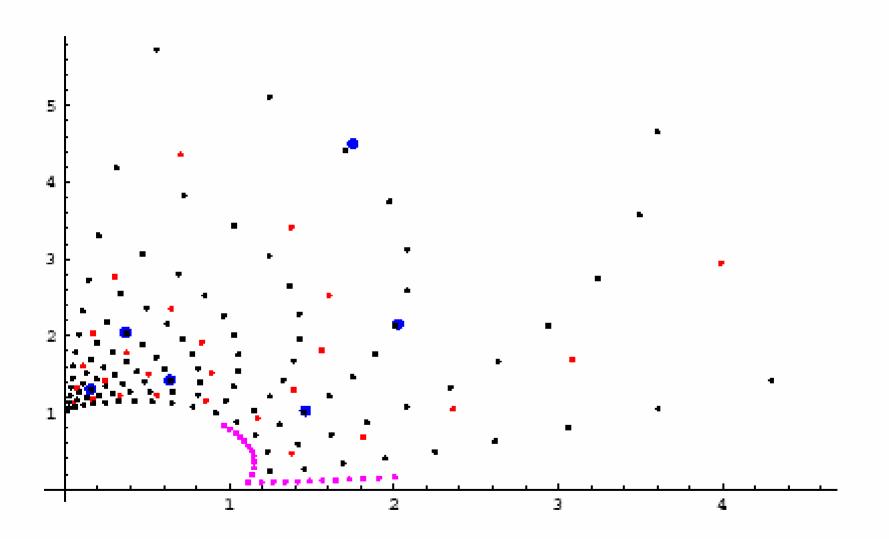
Spectrum as function of λ nothing interesting in middle, symmetry around E = 0 phase transition for all λ >1 at 2E/N = -1 (and 2E/N = +1)

in fact, magnification along the line 2E/N = -1 looks like

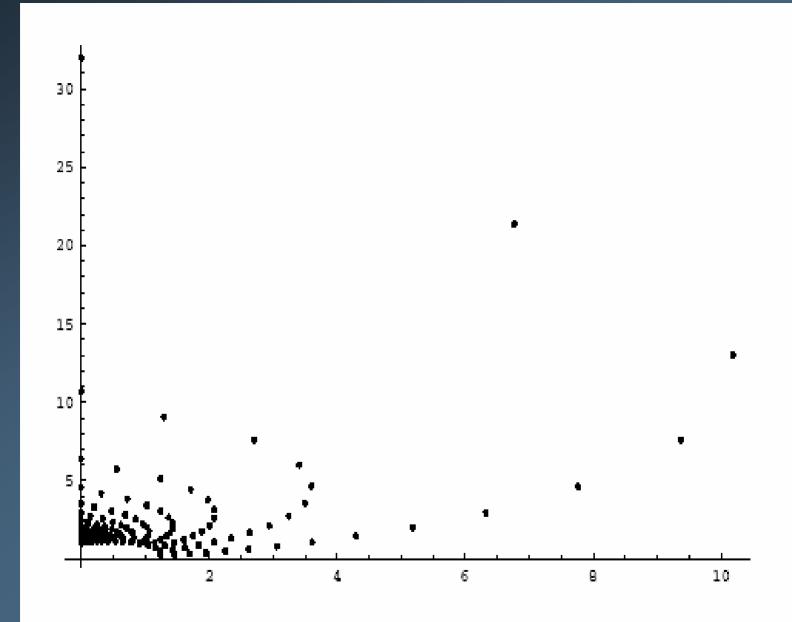


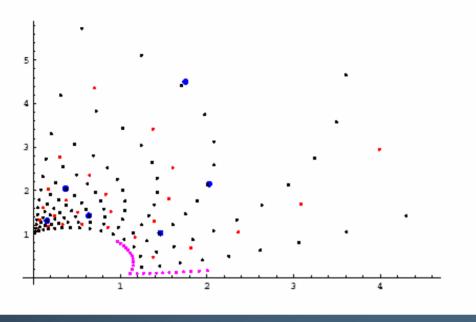
level repulsion – watch EP!

EPs in complex λ - plane for various N



N=8 (blue), =16(red), =32(black), =96(pink)





The inner circle $|\lambda| < 1$ remains free of singularities

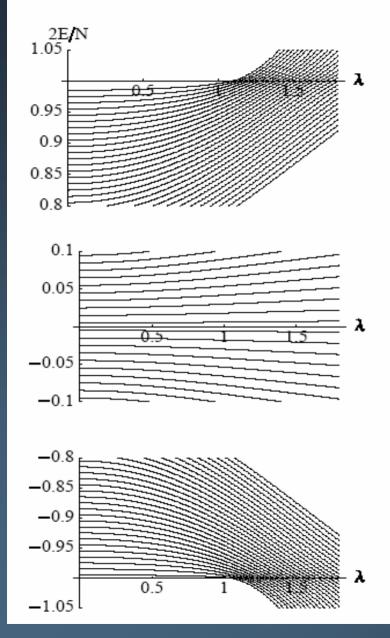
In contrast, for increasing *N*, EPs accumulate in particular along the real λ - axis for $\lambda > 1$ If the EPs retain their character in the thermodynamic limit $N \rightarrow \infty$

the Hamilton-op cannot have

 an 'obvious' self-adjoint limit
'obvious': not at all or not unique.
A self-adjoint op cannot have an EP on the real line.

2) the dense population of EPs could forbid analytic connectedness;for finite *N*, all levels are analytically connected.A dense set of singularities on a line/curve constitutes a natural boundary of analytic domain

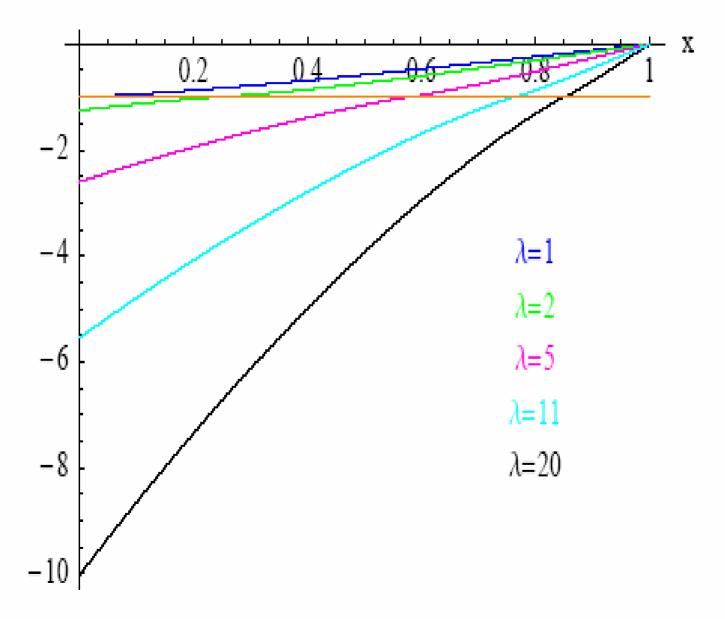
Once more a look at the spectra:



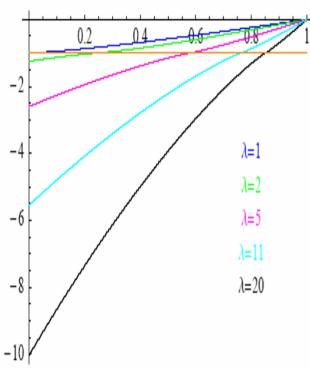
We take cuts for various $\lambda \ge 1$

and 'enumerate' the lower part of the levels $2E_k/N = \varepsilon(x)$ by the 'continuous' label 0 < x < 1

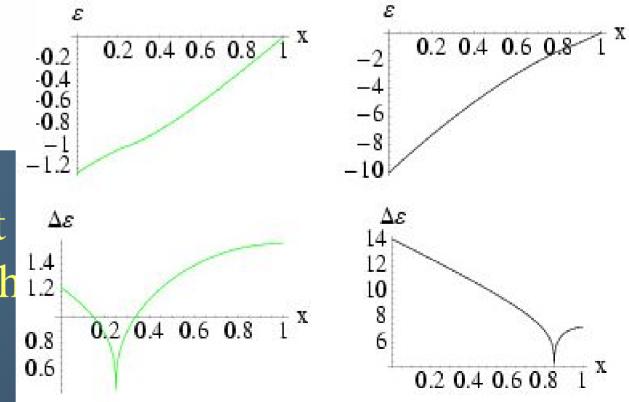
 $k = 1 \qquad \Leftrightarrow x = 0$ $k = N / 2 \Leftrightarrow x = 1$



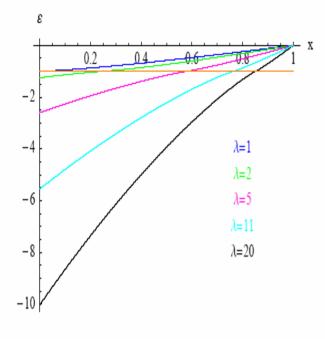
 ${\cal E}$

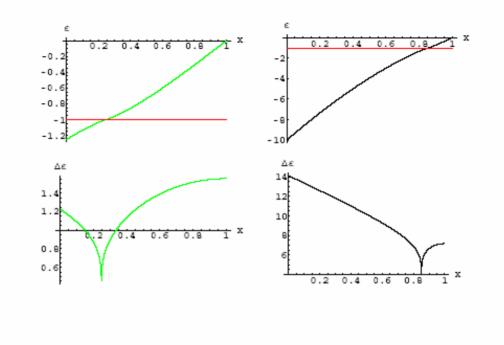


The red line at $\varepsilon = -1$ separates the normal (above) from the deformed (below) phase. Note again the



A closer look at special role of th





When the spectrum passes through the red line it shows – for *N* infinity – a point of inflection with a vanishing derivative while the second derivative is infinity, it is a **singularity**.

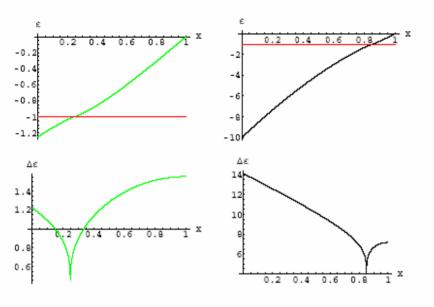
For the energy at $\varepsilon = -1$ as well as for the state vector we do understand the independence of λ

 $\frac{2}{N} \left[J_z + \frac{\lambda}{2N} (J_+^2 + J_-^2) \right] \left| j, -j \right\rangle =$

$= -|j, -j\rangle + \lambda |j, -j+2\rangle \times O(\frac{1}{N})$

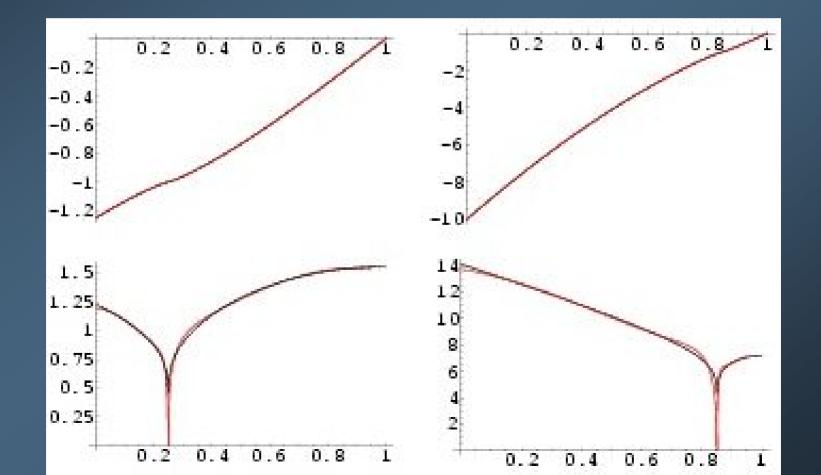
where *j*=*N*/2. The second term vanishes in limit. Recall: for finite N all states are analytically connected.

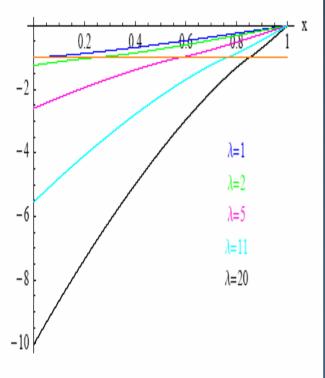
Note: this implies an optimal localisation for this special state.



Trying to describe these curves, one must catch the singular behaviour. Denoting by $x_c(\lambda)$ the point of inflection, the best fit is obtained by

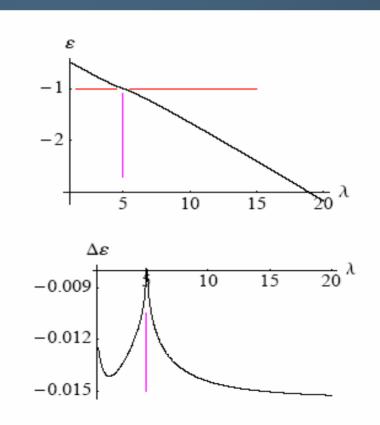
 $(x - x_c(\lambda))^2 \sum_{k=0} a_k(\lambda) (\log |x - x_c(\lambda)|)^k$ where, however, the $a_k(\lambda)$ are different below and above the red line: the two regimes are disconnected analytically! Examples of the quality of the fits, k=3; the respective derivatives compare the derivative of the data with that of the primary fit.





A typical example is the transition at $\lambda = 5$ for x = 0.58again the same notorious cusp with behaviour $(\lambda - \lambda_c)^2 \log |\lambda - \lambda_c| + ...$

In this figure we can look at one particular level (x fixed) and study its behaviour as a function of λ .



Summary: for $N \rightarrow \infty$

1. The EPs accumulate densely including the real λ – axis for λ > 1 evoking a dense set of log-singularities .

2. For real λ the two phase regimes become analytically disconnected.

3. There are two limits for the operator: the normal phase and the deformed phase

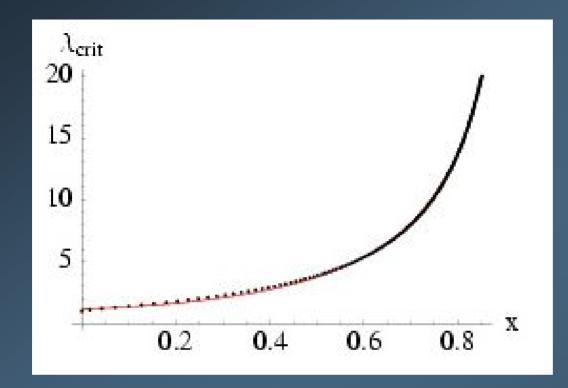
Questions left (at this stage)

Do the eigenvectors of each phase form a complete set?

Is each spectrum an analytic function of λ ?

While the two phases are seemingly disconnected for real λ , is there a path in the λ – plane that connects them?

thank you for your attention



λ_c versus x: seems to obey

$$\lambda_{crit} = A + B \frac{x}{\log x}$$

energy gap at the transition point, for large but finite *N*

