TO TEACH DEFINITIONS IN GEOMETRY OR TEACH TO DEFINE?
Michael de Villiers, University of Durban-Westville, South Africa

This paper argues from a theoretical standpoint that students should be actively engaged in the
defining of geometric concepts like the quadrilaterals, and presents some data relating to a
teaching experiment aimed at developing students' ability to define.

Introduction

Already early in this century the German mathematician Felix Klein (1924) came out strongly
against the practice of presenting mathematical topics as completed axiomatic-deductive
systems, and instead argued for the use of the so-called "bio-genetic™ principle in teaching. The
genetic approach has also been advocated by Wittmann (1973), Polya (1981), Freudenthal
(1973) and many others. Essentially, the genetic approach departs from the standpoint that the
learner should either retrace (at least in part) the path followed by the original discoverers or
inventors, or to retrace a path by which it could have been discovered or invented. In other
words, learners should be exposed to or engaged with the typical mathematical processes by
which new content in mathematics is discovered, invented and organized. Human (1978:20) calls
it the "reconstructive™ approach and contrasts it as follows with the so-called "direct axiomatic-
deductive" approach:

"With this term we want to indicate that content is not directly introduced to pupils (as
finished products of mathematical activity), but that the content is newly reconstructed
during teaching in a typical mathematical manner by the teacher and/or the pupils.” (freely
translated from Afrikaans)

The didactical motivation for the reconstructive approach includes, among others, the following
elements, namely, that its implementation highlights the meaning (actuality) of the content, and
that it allows students to actively participate in the construction and the development of the
content. With different content (definitions, axiom systems, propositions, proofs, algorithms,
etc.) one can of course distinguish different mathematical processes by which that content can be
constructed (eg. defining, axiomatizing, conjecturing, proving, algorithmatizing, etc.). A genetic
or reconstructive approach is therefore characterized by not presenting content as a finished
(prefabricated) product, but rather to focus on the genuine mathematical processes by which the
content can be developed or reconstructed. Note however that a reconstructive approach does not
necessarily imply learning by discovery for it may just be a reconstructive explanation by the
teacher or the textbook.

Defining

The direct teaching of geometry definitions with no emphasis on the underlying process of defining
has often been criticised by mathematicians and mathematics educators alike. For example, already
in 1908 Benchara Blandford wrote (quoted in Griffiths & Howson, 1974: 216-217):

"To me it appears a radically vicious method, certainly in geometry, if not in other subjects,
to supply a child with ready-made definitions, to be subsequently memorized after being
more or less carefully explained. To do this is surely to throw away deliberately one of the
most valuable agents of intellectual discipline. The evolving of a workable definition by the
child's own activity stimulated by appropriate questions, is both interesting and highly
educational.”

In A. Olivier & K. Newstead (Eds), Proceedings of the Twenty-second International Conference for the Psychology of
Mathematics Education: Vol. 2. (pp. 248-255). University of Stellenbosch: Stellenbosch, 12-17 July 1998.



The well-known mathematician Hans Freudenthal (1973:417-418) also strongly criticized the
traditional practice of the direct provision of geometry definitions claiming that most definitions
are not preconceived, but the finishing touch of the organizing activity, and that the child should
not be denied this privilege. Ohtani (1996:81) has argued that the traditional practice of simply
telling definitions to students is a method of moral persuasion with several social functions,
amongst which are: to justify the teacher's control over the students; to attain a degree of
uniformity; to avoid having to deal with students' ideas; and to circumvent problematic
interactions with students. Vinner (1991) and many others have presented arguments and
empirical data that just knowing the definition of a concept does not at all guarantee
understanding of the concept. For example, although a student may have been taught, and be
able to recite, the standard definition of a parallelogram as a quadrilateral with opposite sides
parallel, the student may still not consider rectangles, squares and rhombi as parallelograms,
since the students' concept image of a parallelogram is one in which not all angles or sides are
allowed to be equal.

Linchevski, Vinner & Karsenty (1992) have further reported that many student teachers do not
even understand that definitions in geometry have to be economical (contain no superfluous
information) and that they are arbitrary (in the sense, that several alternative definitions may
exist). It is plausible to conjecture that this is probably due to their past school experiences where
definitions were probably supplied directly to them. It would appear that in order to increase
students' understanding of geometric definitions, and of the concepts to which they relate, it is
essential to engage them at some stage in the process of defining of geometric concepts. Due to
the inherent complexity of the process of defining, it would also appear to be unreasonable to
expect students to immediately come up with formal definitions on their own, unless they have
been guided in a didactic fashion through some examples of the process of defining which they
can later use as models for their own attempts. Furthermore, the construction of definitions
(defining) is a mathematical activity of no less importance than other processes such as solving
problems, making conjectures, generalizing, specializing, proving, etc., and it is therefore strange
that it has been neglected in most mathematics teaching. In mathematics we can distinguish
between two different types of defining of concepts, namely, descriptive (a posteriori) and
constructive (a priori) defining (e.g. compare Krygowska, 1971; Human, 1978:164-165; De
Villiers, 1986;1994).
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Descriptive defining

"... the describing definition ... outlines a known object by singling out a few characteristic
properties". - Hans Freudenthal (1973 : 458)

With the descriptive (a posteriori) defining of a concept is meant here that the concept and its
properties have already been known for some time and is defined only afterwards (see Figure
1a). A posteriori defining is usually accomplished by selecting an appropriate subset of the total
set of properties of the concept from which all the other properties can be deduced. This subset
then serves as the definition and the other remaining properties are then logically derived from it
as theorems.

Constructive defining

"... the algorithmically constructive and creative definition ... models new objects out of familiar
ones" - Hans Freudenthal (1973 : 458).

Constructive (a priori) defining takes places when a given definition of a concept is changed
through the exclusion, generalization, specialization, replacement or addition of properties to the
definition, so that a new concept is constructed in the process (see Figure 1b). In other words, a
new concept is defined "into being", the further properties of which can then be experimentally
or logically explored. Whereas the main purpose or function of a posteriori defining is that of the
systematization of existing knowledge, the main function of a priori defining is the production
of new knowledge. We shall further on mainly focus on a discussion of the teaching and learning
of the process of descriptive defining.



The USEME experiment

From the Van Hiele theory, it is clear that understanding of formal definitions can only develop
at Level 3, since that is where students start noticing the inter-relationships between the
properties of a figure. Is it possible to devise teaching strategies for the learning of the process of
defining at Van Hiele Level 3? This in fact was the focus of the University of Stellenbosch
Experiment with Mathematics Education (USEME) conducted with a control group in 1977 and
an experimental group in 1978 (see Human & Nel et al, 1989a). The experiment was aimed at
the Grade 10 (Std 8) level and involved 19 schools in the Cape Province. Whereas the traditional
approach focusses overridingly on developing the ability of making deductive proofs (especially
for riders), the experimental approach was (among others) aimed mainly at:

* letting students realize: (1) that different, alternative definitions for the same concept
are possible; (2) that definitions may be uneconomical or economical; (3) that some
economical definitions lead to shorter, easier proofs of properties

» developing students' ability to construct formal, economical definitions for geometrical
concepts

The following is an example of one of the first exercises in (descriptive) defining used in the
experimental approach (see Human & Nel et al, 1989b:21). Note that although these students had
already come across the concept "rhombus™, they had not been given any definition in earlier

classes.

EXERCISE
]
B

1(a) Make a list of all the common properties of the figures above. Look at the angles, sides
and diagonals and measure if necessary.

(b) What are these types of quadrilaterals called?

(c) How would you explain in words, without making a sketch, what these quadrilaterals
are to someone not yet acquainted with them?
The spontaneous tendency of almost all the students in (c) was to make a list of all the properties
discovered and listed in (a); thus giving a correct, but uneconomical description (definition) of
the rhombi (thus suggesting Van Hiele Level 2 understanding). This led to the next two exercises
which were intended to lead them to shorten their descriptions (definitions) by considering
leaving out some properties.




Typically the students then came up with different shorter versions, some of which were
incomplete (particularly if they're encouraged to make them as short as possible by promising a
prize!), for example: "A rhombus is a quadrilateral with perpendicular diagonals”. This
provided opportunity to provide a counter-example and a discussion of the need to contain
enough (sufficient) information in one's descriptions (definitions) to ensure that somebody else
knows exactly what figure one is talking about. Also note at this stage that they were not
expected to logically check their definitions, but expected to check whether the conditions
contained in their definitions provided sufficient information for the accurate construction of a
rhombus.

Psychologically, constructions like these are extremely important for the transition from Van
Hiele Level 2 to Level 3, since it helps to develop an understanding of the logical structure of "if-
then™ statements (compare Smith, 1940). For example, students learned to distinguish clearly
between the relationships they put into a figure (the premisse) and the relationships which
resulted without any action on their part (the conclusion).

The students were then led into a deductive phase where starting from one definition they had to
logically check whether all the other properties could be derived from it (as theorems). The same
exercises were then repeated for the parallelograms. Eventually, it was explained to students that
it would be confusing if everyone used different definitions for the rhombi and parallelograms,
and it was agreed to henceforth use one definition only for each concept.

In order to evaluate whether students had developed some ability to formally define geometric
concepts themselves, the following were some of the questions given afterwards to the
experimental, as well as the control group. The first question was of a known concept that both
groups had already treated in class (the control group in a direct way & the experimental group
in a reconstructive way). So essentially they just needed to recall a definition done in class. This
question therefore served only as a base line against which to judge their ability to define in the
next question which was of a completely new concept that had been not treated at all in any of
the groups.

1. Give a definition of the parallelograms.
2. Quadrilaterals which look like the one below is called a regular trapezium.

The regular trapeziums have among others the following properties:

(1) One pair of opposite sides parallel, but not equal.

(2) Diagonals are equal.

(3) Base angles are equal (see figure).

(4) Top angles are equal (see figure).

(5) A top angle and base angle are togther equal to 180°.
(6) One pair of opposite sides are equal, but not parallel.



Answer the following questions:
(@) Provide a definition (as short as possible) of the regular trapeziums.

(b) Prove that the properties of regular trapeziums not mentioned in your definition, indeed
logically follow from your definition.

Table 1 gives the results that were obtained. Note that both groups had the same teachers and
that they were statistically comparable in terms of 1Q, language ability, etc. It is immediately
noticeable that the experimental group gave higher percentages of correct, economical
definitions in both cases. The experimental group also gave fewer correct, uneconomical
definitions in both cases. This improvement in terms of economy of definition for the
experimental group, however, appeared to be at a slight cost in relation to Question 1, in the
sense that there was a slightly higher number of faulty definitions which contained insufficient
properties. It is possible that this increase was due to uncritical attempts at producing economical
definitions. This indicates a possible risk of the experimental approach. What was perhaps
extremely surprising was that both the control and experimental groups performed better in
defining the unknown concept than the known concept. A possible explanation could be that in
Question 2, the act of constructing a definition themselves, forced them to more carefully
consider the underlying logical relationships, than to just uncritically try and recall a previously
learnt definition in Question 1.

Question 1 Question 2
Correct economical Control 25% 44%
Experimental 54% 58%
Faulty Control 22% 8%
Experimental 26% 4%
Correct uneconomical | Control 51% 47%
Experimental 19% 39%
None Control 2% 0%
Experimental 0% 0%
Table 1

Further discussion

From the constructivist assumption that meaningful knowledge needs to be actively (re)-
constructed by the learner, it also follows that students should be engaged in the activity of
defining and allowed to choose their own definitions at each Van Hiele level. This implies
allowing the following kinds of meaningful definitions at each VVan Hiele level (compare Burger
& Shaughnessy, 1986):

Van Hiele 1: Visual definitions, eg. a rectangle is a quad that looks like this (draws or identfies
one) or describes it in terms of visual properties, eg. all angles 90°, two long and two short sides.

Van Hiele 2: Uneconomical definitions, eg. a rectangle is a quadrilateral with opposite sides
parallel and equal, all angles 90°, equal diagonals, half-turn-symmetry, two axes of symmetry
through opposite sides, two long and two short sides, etc.

Van Hiele 3: Correct, economical definitions, eg. a rectangle is a quadrilateral with an axis of
symmetry through each pair of opposite sides.

The first two examples show that students' definitions at these levels would tend to be
partitional, in other words, they would not allow the inclusion of the squares among the
rectangles (by explicitly stating two long and two short sides). In contrast, according to the Van
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Hiele theory, definitions at Level 3 are typically hierarchical, which means they allow for the
inclusion of the squares among the rectangles, and would not be understood by students at lower
levels. However, research reported in De Villiers (1994) show that many students who exhibit
excellent competence in logical reasoning at Level 3, if given the opportunity, still prefer to
define quadrilaterals in partitions. (In other words, they would for example define a
parallelogram as a quadrilateral with both pairs of opposite sides parallel, but not all angles or
sides equal).

For this reason, students should not simply be supplied with ready-made definitions for the
quadrilaterals, but allowed to formulate their own definitions irrespective of whether they are
partitional or hierarchical. By then discussing and comparing in class the relative advantages and
disadvantages of these two different ways of classifying and defining quadrilaterals (both of
which are mathematically correct), students may be led to realize that there are certain
advantages in accepting a hierarchical classification (compare De Villiers, 1994). For example, if
students are asked to compare the following two definitions for the parallellograms, they
immediately realize that the former is much more economical than the latter:

hierarchical: A parallelogram is a quadrilateral with both pairs of opposite sides parallel.

partitional: A parallelogram is a quadrilateral with both pairs of opposite sides parallel, but
not all angles or sides equal.

Clearly in general, partitional definitions are longer since they have to include additional
properties to ensure the exclusion of special cases. Another advantage of a hierarchical definition
for a concept is that all theorems proved for that concept then automatically apply to its special
cases. For example, if we prove that the diagonals of a parallelogram bisect each other, we can
immediately conclude that it is also true for rectangles, rhombi and squares. If however, we
classified and defined them partitionally, we would have to prove separately in each case, for
parallelograms, rectangles, rhombi and squares, that their diagonals bisect each other. Clearly
this is very uneconomical. It seems clear that unless the role and function of a hierarchical
classification is meaningfully discussed in class, many students will have difficulty in
understanding why their own partitional definitions are not used.

C o C

Figure 2

On the other hand, the dynamic nature of geometric figures constructed in Sketchpad or Cabri may
also make the acceptance of a hierachical classification of the quadrilaterals far easier. For example,
if students construct a quadrilateral with opposite sides parallel, then they will notice that they could
easily drag it into the shape of a rectangle, rhombus or square as shown in Figure 2. (Recently in a
session on Sketchpad with my 8-year old son, he had no difficulty dragging a parallelogram into the
shape of a square and a rectangle, and then accepting that they were special cases). In fact, it seems
quite possible that with dynamic software, students would be able to accept and understand this even
at Van Hiele Level 1 (Visualization), but further research into this particular area is needed.
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